Any feedback?
Please rate this page
(literature.php)
(0/150)

BRENDA support

Literature summary for 2.1.1.224 extracted from

  • Atkinson, G.C.; Hansen, L.H.; Tenson, T.; Rasmussen, A.; Kirpekar, F.; Vester, B.
    Distinction between the Cfr methyltransferase conferring antibiotic resistance and the housekeeping RlmN methyltransferase (2013), Antimicrob. Agents Chemother., 57, 4019-4026.
    View publication on PubMedView publication on EuropePMC

Cloned(Commentary)

Cloned (Comment) Organism
gene cfr, sequence comparisons and phylogenetic analysis, primer extension analysis, cloning and expression in Escherichia coli strains TOP10 and AS19 Mammaliicoccus sciuri

Natural Substrates/ Products (Substrates)

Natural Substrates Organism Comment (Nat. Sub.) Natural Products Comment (Nat. Pro.) Rev. Reac.
2 S-adenosyl-L-methionine + adenine2503 in 23S rRNA + 2 reduced [4Fe-4S] ferredoxin Mammaliicoccus sciuri
-
S-adenosyl-L-homocysteine + L-methionine + 5'-deoxyadenosine + 8-methyladenine2503 in 23S rRNA + 2 oxidized [4Fe-4S] ferredoxin
-
?

Organism

Organism UniProt Comment Textmining
Mammaliicoccus sciuri Q9FBG4 gene cfr
-

Reaction

Reaction Comment Organism Reaction ID
2 S-adenosyl-L-methionine + adenine2503 in 23S rRNA + 2 reduced [2Fe-2S] ferredoxin = S-adenosyl-L-homocysteine + L-methionine + 5'-deoxyadenosine + 8-methyladenine2503 in 23S rRNA + 2 oxidized [2Fe-2S] ferredoxin the enzyme uses a mechanism involving radical S-adenosyl methionine to methylate RNA via an intermediate with a methylated cysteine in the enzyme and a transient cross-linking to the RNA Mammaliicoccus sciuri

Substrates and Products (Substrate)

Substrates Comment Substrates Organism Products Comment (Products) Rev. Reac.
2 S-adenosyl-L-methionine + adenine2503 in 23S rRNA + 2 reduced [4Fe-4S] ferredoxin
-
Mammaliicoccus sciuri S-adenosyl-L-homocysteine + L-methionine + 5'-deoxyadenosine + 8-methyladenine2503 in 23S rRNA + 2 oxidized [4Fe-4S] ferredoxin
-
?

Synonyms

Synonyms Comment Organism
Cfr methyltransferase
-
Mammaliicoccus sciuri

Cofactor

Cofactor Comment Organism Structure
S-adenosyl-L-methionine
-
Mammaliicoccus sciuri

General Information

General Information Comment Organism
evolution the cfr gene can be horizontally transferred to its hosts, as it is always found either on plasmids or together with insertion sequences. The cfr gene with only minor sequence differences are found worldwide in various bacteria isolated from humans and animals. Comparative sequence analysis identifies differentially conserved residues that indicate functional sequence divergence between the two classes of Cfr and RlmN-like sequences. The enzymes are homologous and use the same mechanism involving radical S-adenosyl methionine to methylate RNA via an intermediate involving a methylated cysteine in the enzyme and a transient cross-linking to the RNA, but they differ in which carbon atom in the adenine they methylate. The differentiation between the two classes is supported by experimental evidence from antibiotic resistance, primer extensions, and mass spectrometry. The Cfr- and RlmN-specific conserved sites provide a very good indication of whether a gene is Cfr-like or RlmN-like. Most bacteria have an rlmN-like gene and that all those that have a cfr-like gene also have an rlmN-like gene, evolutionary aspects of the bacterial distribution of Cfr and RlmN-like enzymes, overview Mammaliicoccus sciuri
physiological function the Cfr methyltransferase primarily methylates C-8 in A2503 of 23S rRNA in the peptidyl transferase region of bacterial ribosomes. Enzyme Cfr confers resistance to antibiotics binding to the peptidyl transferase center on the ribosome, defining a PhLOPSa phenotype that reflects resistance to phenicol, lincosamide, oxazolidinone, pleuromutilin, and streptogramin A antibiotic classes. Cfr also provides resistance to some large macrolide antibiotics. The cfr gene is thus a health threat when spreading in pathogenic bacteria because many clinically important antibiotics become useless for treatment Mammaliicoccus sciuri