Any feedback?
Please rate this page
(literature.php)
(0/150)

BRENDA support

Literature summary for 2.7.4.3 extracted from

  • Noda, L.
    Adenylate kinase (1973), The Enzymes,3rd Ed. (Boyer,P. D. ,ed. ), 8, 279-305.
No PubMed abstract available

Crystallization (Commentary)

Crystallization (Comment) Organism
muscle Homo sapiens
muscle Sus scrofa
muscle Oryctolagus cuniculus

Inhibitors

Inhibitors Comment Organism Structure
5,5'-dithiobis(2-nitrobenzoic acid) not: liver enzyme Bos taurus
5,5'-dithiobis(2-nitrobenzoic acid)
-
Escherichia coli
5,5'-dithiobis(2-nitrobenzoic acid) muscle enzyme Homo sapiens
5,5'-dithiobis(2-nitrobenzoic acid) not: liver enzyme Rattus norvegicus
5,5'-dithiobis(2-nitrobenzoic acid)
-
Saccharomyces cerevisiae
5,5'-dithiobis(2-nitrobenzoic acid)
-
Sus scrofa

KM Value [mM]

KM Value [mM] KM Value Maximum [mM] Substrate Comment Organism Structure
additional information
-
additional information kinetic constants of adenylate kinases from various sources Homo sapiens
additional information
-
additional information kinetic constants of adenylate kinases from various sources Rattus norvegicus
additional information
-
additional information kinetic constants of adenylate kinases from various sources Saccharomyces cerevisiae
additional information
-
additional information kinetic constants of adenylate kinases from various sources Bos taurus
additional information
-
additional information kinetic constants of adenylate kinases from various sources Oryctolagus cuniculus
additional information
-
additional information kinetic constants of adenylate kinases from various sources Blattidae

Localization

Localization Comment Organism GeneOntology No. Textmining
cytosol
-
Bacillus subtilis 5829
-
cytosol
-
Mus musculus 5829
-
cytosol
-
Escherichia coli 5829
-
cytosol
-
Homo sapiens 5829
-
cytosol
-
Sus scrofa 5829
-
cytosol
-
Saccharomyces cerevisiae 5829
-
cytosol
-
Bos taurus 5829
-
cytosol
-
Triticum aestivum 5829
-
cytosol
-
Oryctolagus cuniculus 5829
-
cytosol
-
Physarum polycephalum 5829
-
cytosol
-
Thiobacillus denitrificans 5829
-
cytosol
-
Citrus limon 5829
-
cytosol
-
Blattidae 5829
-
cytosol isozyme II Rattus norvegicus 5829
-
mitochondrion intermembrane space Homo sapiens 5739
-
mitochondrion intermembrane space Rattus norvegicus 5739
-
mitochondrion intermembrane space Sus scrofa 5739
-
mitochondrion intermembrane space Bos taurus 5739
-
mitochondrion intermembrane space Oryctolagus cuniculus 5739
-
mitochondrion intermembrane space Blattidae 5739
-
additional information
-
Bacillus subtilis
-
-
additional information
-
Mus musculus
-
-
additional information
-
Escherichia coli
-
-
additional information
-
Homo sapiens
-
-
additional information
-
Sus scrofa
-
-
additional information
-
Saccharomyces cerevisiae
-
-
additional information
-
Bos taurus
-
-
additional information
-
Triticum aestivum
-
-
additional information
-
Oryctolagus cuniculus
-
-
additional information
-
Physarum polycephalum
-
-
additional information
-
Thiobacillus denitrificans
-
-
additional information
-
Citrus limon
-
-
additional information
-
Blattidae
-
-
additional information particle-associated Rattus norvegicus
-
-
additional information subcellular distribution of 4 rat isozymes Rattus norvegicus
-
-
nucleus
-
Homo sapiens 5634
-
nucleus
-
Rattus norvegicus 5634
-

Metals/Ions

Metals/Ions Comment Organism Structure
Ba2+ requirement Saccharomyces cerevisiae
Ba2+ requirement Oryctolagus cuniculus
Ba2+ in decreasing order of efficiency: Mg2+, Ca2+, Mn2+, Ba2+ Saccharomyces cerevisiae
Ba2+ in decreasing order of efficiency: Mg2+, Ca2+, Mn2+, Ba2+ Oryctolagus cuniculus
Ba2+ forms complex with di- or trinucleotide Bacillus subtilis
Ba2+ forms complex with di- or trinucleotide Mus musculus
Ba2+ forms complex with di- or trinucleotide Escherichia coli
Ba2+ forms complex with di- or trinucleotide Homo sapiens
Ba2+ forms complex with di- or trinucleotide Rattus norvegicus
Ba2+ forms complex with di- or trinucleotide Sus scrofa
Ba2+ forms complex with di- or trinucleotide Saccharomyces cerevisiae
Ba2+ forms complex with di- or trinucleotide Bos taurus
Ba2+ forms complex with di- or trinucleotide Triticum aestivum
Ba2+ forms complex with di- or trinucleotide Oryctolagus cuniculus
Ba2+ forms complex with di- or trinucleotide Physarum polycephalum
Ba2+ forms complex with di- or trinucleotide Thiobacillus denitrificans
Ba2+ forms complex with di- or trinucleotide Citrus limon
Ba2+ forms complex with di- or trinucleotide Blattidae
Ca2+ less effective than Mg2+ Saccharomyces cerevisiae
Ca2+ less effective than Mg2+ Bos taurus
Ca2+ in decreasing order of efficiency: Mg2+, Mn2+, Ca2+, Co2+ Bos taurus
Ca2+ requirement, as good as Mg2+ Saccharomyces cerevisiae
Ca2+ requirement, as good as Mg2+ Oryctolagus cuniculus
Ca2+ in decreasing order of efficiency: Mg2+, Ca2+ Mn2+, Ba2+ Saccharomyces cerevisiae
Ca2+ in decreasing order of efficiency: Mg2+, Ca2+ Mn2+, Ba2+ Oryctolagus cuniculus
Ca2+ metal ion forms complex with di- or trinucleotide Bacillus subtilis
Ca2+ metal ion forms complex with di- or trinucleotide Mus musculus
Ca2+ metal ion forms complex with di- or trinucleotide Escherichia coli
Ca2+ metal ion forms complex with di- or trinucleotide Homo sapiens
Ca2+ metal ion forms complex with di- or trinucleotide Rattus norvegicus
Ca2+ metal ion forms complex with di- or trinucleotide Sus scrofa
Ca2+ metal ion forms complex with di- or trinucleotide Saccharomyces cerevisiae
Ca2+ metal ion forms complex with di- or trinucleotide Bos taurus
Ca2+ metal ion forms complex with di- or trinucleotide Triticum aestivum
Ca2+ metal ion forms complex with di- or trinucleotide Oryctolagus cuniculus
Ca2+ metal ion forms complex with di- or trinucleotide Physarum polycephalum
Ca2+ metal ion forms complex with di- or trinucleotide Thiobacillus denitrificans
Ca2+ metal ion forms complex with di- or trinucleotide Citrus limon
Ca2+ metal ion forms complex with di- or trinucleotide Blattidae
Co2+ requirement Saccharomyces cerevisiae
Co2+ requirement Bos taurus
Co2+ can replace Mg2+, Mn2+ or Ca2+ less efficiently Bacillus subtilis
Co2+ can replace Mg2+, Mn2+ or Ca2+ less efficiently Mus musculus
Co2+ can replace Mg2+, Mn2+ or Ca2+ less efficiently Escherichia coli
Co2+ can replace Mg2+, Mn2+ or Ca2+ less efficiently Homo sapiens
Co2+ can replace Mg2+, Mn2+ or Ca2+ less efficiently Rattus norvegicus
Co2+ can replace Mg2+, Mn2+ or Ca2+ less efficiently Sus scrofa
Co2+ can replace Mg2+, Mn2+ or Ca2+ less efficiently Saccharomyces cerevisiae
Co2+ can replace Mg2+, Mn2+ or Ca2+ less efficiently Bos taurus
Co2+ can replace Mg2+, Mn2+ or Ca2+ less efficiently Triticum aestivum
Co2+ can replace Mg2+, Mn2+ or Ca2+ less efficiently Oryctolagus cuniculus
Co2+ can replace Mg2+, Mn2+ or Ca2+ less efficiently Physarum polycephalum
Co2+ can replace Mg2+, Mn2+ or Ca2+ less efficiently Thiobacillus denitrificans
Co2+ can replace Mg2+, Mn2+ or Ca2+ less efficiently Citrus limon
Co2+ can replace Mg2+, Mn2+ or Ca2+ less efficiently Blattidae
Mg2+ requirement Bacillus subtilis
Mg2+ requirement Mus musculus
Mg2+ requirement Escherichia coli
Mg2+ requirement Homo sapiens
Mg2+ requirement Rattus norvegicus
Mg2+ requirement Sus scrofa
Mg2+ requirement Saccharomyces cerevisiae
Mg2+ requirement Bos taurus
Mg2+ requirement Triticum aestivum
Mg2+ requirement Oryctolagus cuniculus
Mg2+ requirement Physarum polycephalum
Mg2+ requirement Thiobacillus denitrificans
Mg2+ requirement Citrus limon
Mg2+ requirement Blattidae
Mg2+ in decreasing order of efficiency: Mg2+, Ca2+, Mn2+, Ba2+ Saccharomyces cerevisiae
Mg2+ in decreasing order of efficiency: Mg2+, Ca2+, Mn2+, Ba2+ Oryctolagus cuniculus
Mg2+ MgATP2- is true substrate Bacillus subtilis
Mg2+ MgATP2- is true substrate Mus musculus
Mg2+ MgATP2- is true substrate Escherichia coli
Mg2+ MgATP2- is true substrate Homo sapiens
Mg2+ MgATP2- is true substrate Rattus norvegicus
Mg2+ MgATP2- is true substrate Sus scrofa
Mg2+ MgATP2- is true substrate Saccharomyces cerevisiae
Mg2+ MgATP2- is true substrate Bos taurus
Mg2+ MgATP2- is true substrate Triticum aestivum
Mg2+ MgATP2- is true substrate Oryctolagus cuniculus
Mg2+ MgATP2- is true substrate Physarum polycephalum
Mg2+ MgATP2- is true substrate Thiobacillus denitrificans
Mg2+ MgATP2- is true substrate Citrus limon
Mg2+ MgATP2- is true substrate Blattidae
Mg2+ enzymatic reaction resembles inorganic metal catalysis Bacillus subtilis
Mg2+ enzymatic reaction resembles inorganic metal catalysis Mus musculus
Mg2+ enzymatic reaction resembles inorganic metal catalysis Escherichia coli
Mg2+ enzymatic reaction resembles inorganic metal catalysis Homo sapiens
Mg2+ enzymatic reaction resembles inorganic metal catalysis Rattus norvegicus
Mg2+ enzymatic reaction resembles inorganic metal catalysis Sus scrofa
Mg2+ enzymatic reaction resembles inorganic metal catalysis Saccharomyces cerevisiae
Mg2+ enzymatic reaction resembles inorganic metal catalysis Bos taurus
Mg2+ enzymatic reaction resembles inorganic metal catalysis Triticum aestivum
Mg2+ enzymatic reaction resembles inorganic metal catalysis Oryctolagus cuniculus
Mg2+ enzymatic reaction resembles inorganic metal catalysis Physarum polycephalum
Mg2+ enzymatic reaction resembles inorganic metal catalysis Thiobacillus denitrificans
Mg2+ enzymatic reaction resembles inorganic metal catalysis Citrus limon
Mg2+ enzymatic reaction resembles inorganic metal catalysis Blattidae
Mg2+ MgADP- is true substrate Bacillus subtilis
Mg2+ MgADP- is true substrate Mus musculus
Mg2+ MgADP- is true substrate Escherichia coli
Mg2+ MgADP- is true substrate Homo sapiens
Mg2+ MgADP- is true substrate Rattus norvegicus
Mg2+ MgADP- is true substrate Sus scrofa
Mg2+ MgADP- is true substrate Saccharomyces cerevisiae
Mg2+ MgADP- is true substrate Bos taurus
Mg2+ MgADP- is true substrate Triticum aestivum
Mg2+ MgADP- is true substrate Oryctolagus cuniculus
Mg2+ MgADP- is true substrate Physarum polycephalum
Mg2+ MgADP- is true substrate Thiobacillus denitrificans
Mg2+ MgADP- is true substrate Citrus limon
Mg2+ MgADP- is true substrate Blattidae
Mg2+ in decreasing order of efficiency: Mg2+, Mn2+, Ca2+, Co2+ Bos taurus
Mg2+ forms complex with di- or trinucleotide Bacillus subtilis
Mg2+ forms complex with di- or trinucleotide Mus musculus
Mg2+ forms complex with di- or trinucleotide Escherichia coli
Mg2+ forms complex with di- or trinucleotide Homo sapiens
Mg2+ forms complex with di- or trinucleotide Rattus norvegicus
Mg2+ forms complex with di- or trinucleotide Sus scrofa
Mg2+ forms complex with di- or trinucleotide Saccharomyces cerevisiae
Mg2+ forms complex with di- or trinucleotide Bos taurus
Mg2+ forms complex with di- or trinucleotide Triticum aestivum
Mg2+ forms complex with di- or trinucleotide Oryctolagus cuniculus
Mg2+ forms complex with di- or trinucleotide Physarum polycephalum
Mg2+ forms complex with di- or trinucleotide Thiobacillus denitrificans
Mg2+ forms complex with di- or trinucleotide Citrus limon
Mg2+ forms complex with di- or trinucleotide Blattidae
Mn2+ in decreasing order of efficiency: Mg2+, Ca2+, Mn2+, Ba2+ Saccharomyces cerevisiae
Mn2+ in decreasing order of efficiency: Mg2+, Ca2+, Mn2+, Ba2+ Oryctolagus cuniculus
Mn2+ in decreasing order of efficiency: Mg2+, Mn2+, Ca2+, Co2+ Bos taurus
Mn2+ forms complex with di- or trinucleotide Bacillus subtilis
Mn2+ forms complex with di- or trinucleotide Mus musculus
Mn2+ forms complex with di- or trinucleotide Escherichia coli
Mn2+ forms complex with di- or trinucleotide Homo sapiens
Mn2+ forms complex with di- or trinucleotide Rattus norvegicus
Mn2+ forms complex with di- or trinucleotide Sus scrofa
Mn2+ forms complex with di- or trinucleotide Saccharomyces cerevisiae
Mn2+ forms complex with di- or trinucleotide Bos taurus
Mn2+ forms complex with di- or trinucleotide Triticum aestivum
Mn2+ forms complex with di- or trinucleotide Oryctolagus cuniculus
Mn2+ forms complex with di- or trinucleotide Physarum polycephalum
Mn2+ forms complex with di- or trinucleotide Thiobacillus denitrificans
Mn2+ forms complex with di- or trinucleotide Citrus limon
Mn2+ forms complex with di- or trinucleotide Blattidae

Molecular Weight [Da]

Molecular Weight [Da] Molecular Weight Maximum [Da] Comment Organism
21000
-
muscle, sedimentation and diffusion Oryctolagus cuniculus
21000
-
eye lens Bos taurus
21300
-
-
Homo sapiens
21300
-
muscle Sus scrofa
21500
-
-
Homo sapiens
21500
-
liver mitochondria Bos taurus
23000
-
-
Homo sapiens
23000
-
isozyme III, at concentrations above 3 mg/ml, dimers and trimers of MW 46000 and 68000 are formed Rattus norvegicus
41000
-
-
Saccharomyces cerevisiae
46000 49000 isozyme II Rattus norvegicus

Natural Substrates/ Products (Substrates)

Natural Substrates Organism Comment (Nat. Sub.) Natural Products Comment (Nat. Pro.) Rev. Reac.
ADP + ADP Bacillus subtilis facilitates storage and use of the high energy of the adenine nucleotides, involved in maintenance of equilibrium among adenine nucleotides and maintenance of energy charge, important to energy economy of living systems ?
-
r
ADP + ADP Mus musculus facilitates storage and use of the high energy of the adenine nucleotides, involved in maintenance of equilibrium among adenine nucleotides and maintenance of energy charge, important to energy economy of living systems ?
-
r
ADP + ADP Escherichia coli facilitates storage and use of the high energy of the adenine nucleotides, involved in maintenance of equilibrium among adenine nucleotides and maintenance of energy charge, important to energy economy of living systems ?
-
r
ADP + ADP Homo sapiens facilitates storage and use of the high energy of the adenine nucleotides, involved in maintenance of equilibrium among adenine nucleotides and maintenance of energy charge, important to energy economy of living systems ?
-
r
ADP + ADP Rattus norvegicus facilitates storage and use of the high energy of the adenine nucleotides, involved in maintenance of equilibrium among adenine nucleotides and maintenance of energy charge, important to energy economy of living systems ?
-
r
ADP + ADP Sus scrofa facilitates storage and use of the high energy of the adenine nucleotides, involved in maintenance of equilibrium among adenine nucleotides and maintenance of energy charge, important to energy economy of living systems ?
-
r
ADP + ADP Saccharomyces cerevisiae facilitates storage and use of the high energy of the adenine nucleotides, involved in maintenance of equilibrium among adenine nucleotides and maintenance of energy charge, important to energy economy of living systems ?
-
r
ADP + ADP Bos taurus facilitates storage and use of the high energy of the adenine nucleotides, involved in maintenance of equilibrium among adenine nucleotides and maintenance of energy charge, important to energy economy of living systems ?
-
r
ADP + ADP Triticum aestivum facilitates storage and use of the high energy of the adenine nucleotides, involved in maintenance of equilibrium among adenine nucleotides and maintenance of energy charge, important to energy economy of living systems ?
-
r
ADP + ADP Oryctolagus cuniculus facilitates storage and use of the high energy of the adenine nucleotides, involved in maintenance of equilibrium among adenine nucleotides and maintenance of energy charge, important to energy economy of living systems ?
-
r
ADP + ADP Physarum polycephalum facilitates storage and use of the high energy of the adenine nucleotides, involved in maintenance of equilibrium among adenine nucleotides and maintenance of energy charge, important to energy economy of living systems ?
-
r
ADP + ADP Thiobacillus denitrificans facilitates storage and use of the high energy of the adenine nucleotides, involved in maintenance of equilibrium among adenine nucleotides and maintenance of energy charge, important to energy economy of living systems ?
-
r
ADP + ADP Citrus limon facilitates storage and use of the high energy of the adenine nucleotides, involved in maintenance of equilibrium among adenine nucleotides and maintenance of energy charge, important to energy economy of living systems ?
-
r
ADP + ADP Blattidae facilitates storage and use of the high energy of the adenine nucleotides, involved in maintenance of equilibrium among adenine nucleotides and maintenance of energy charge, important to energy economy of living systems ?
-
r

Organism

Organism UniProt Comment Textmining
Bacillus subtilis
-
-
-
Blattidae
-
-
-
Bos taurus
-
-
-
Citrus limon
-
lemon, sweet and sour
-
Escherichia coli
-
-
-
Homo sapiens
-
-
-
Mus musculus
-
normal or with genetically induced muscular dystrophy
-
Oryctolagus cuniculus
-
-
-
Physarum polycephalum
-
slime mold
-
Rattus norvegicus
-
adult or neonatal
-
Saccharomyces cerevisiae
-
-
-
Sus scrofa
-
-
-
Thiobacillus denitrificans
-
-
-
Triticum aestivum
-
-
-

Purification (Commentary)

Purification (Comment) Organism
-
Bacillus subtilis
-
Saccharomyces cerevisiae
-
Blattidae
liver enzyme, 4 isozymes Rattus norvegicus
liver mitochondria, eye lens Bos taurus
muscle Homo sapiens
muscle Sus scrofa
muscle Oryctolagus cuniculus

Reaction

Reaction Comment Organism Reaction ID
ATP + AMP = 2 ADP mechanism Mus musculus
ATP + AMP = 2 ADP mechanism Rattus norvegicus
ATP + AMP = 2 ADP mechanism Sus scrofa
ATP + AMP = 2 ADP mechanism Bos taurus
ATP + AMP = 2 ADP mechanism Oryctolagus cuniculus

Source Tissue

Source Tissue Comment Organism Textmining
brain
-
Mus musculus
-
brain
-
Homo sapiens
-
brain
-
Rattus norvegicus
-
brain
-
Sus scrofa
-
brain
-
Bos taurus
-
brain
-
Oryctolagus cuniculus
-
erythrocyte
-
Homo sapiens
-
erythrocyte
-
Oryctolagus cuniculus
-
fruit
-
Citrus limon
-
heart
-
Mus musculus
-
heart
-
Homo sapiens
-
heart
-
Rattus norvegicus
-
heart
-
Sus scrofa
-
heart
-
Bos taurus
-
heart
-
Oryctolagus cuniculus
-
kidney
-
Homo sapiens
-
kidney
-
Rattus norvegicus
-
kidney
-
Oryctolagus cuniculus
-
leaf
-
Triticum aestivum
-
leaf
-
Citrus limon
-
leukocyte
-
Homo sapiens
-
liver
-
Homo sapiens
-
liver
-
Rattus norvegicus
-
liver
-
Bos taurus
-
liver
-
Oryctolagus cuniculus
-
lung
-
Homo sapiens
-
additional information
-
Bacillus subtilis
-
additional information
-
Escherichia coli
-
additional information
-
Saccharomyces cerevisiae
-
additional information
-
Physarum polycephalum
-
additional information
-
Thiobacillus denitrificans
-
additional information tissue distribution Mus musculus
-
additional information tissue distribution Homo sapiens
-
additional information tissue distribution Rattus norvegicus
-
additional information tissue distribution Sus scrofa
-
additional information tissue distribution Bos taurus
-
additional information tissue distribution Triticum aestivum
-
additional information tissue distribution Oryctolagus cuniculus
-
additional information tissue distribution Citrus limon
-
additional information tissue distribution Blattidae
-
additional information rabbit and human carry a minimum of 2 sets of isozymes within an individual: one set in muscle, erythrocytes, brain and another in liver, kidney and spleen Homo sapiens
-
additional information rabbit and human carry a minimum of 2 sets of isozymes within an individual: one set in muscle, erythrocytes, brain and another in liver, kidney and spleen Oryctolagus cuniculus
-
additional information high activities in tissues where turnover of energy from adenine nucleotides is great, e. g. muscle Homo sapiens
-
additional information high activities in tissues where turnover of energy from adenine nucleotides is great, e. g. muscle Sus scrofa
-
additional information high activities in tissues where turnover of energy from adenine nucleotides is great, e. g. muscle Oryctolagus cuniculus
-
muscle
-
Mus musculus
-
muscle
-
Homo sapiens
-
muscle
-
Rattus norvegicus
-
muscle
-
Sus scrofa
-
muscle
-
Bos taurus
-
muscle
-
Oryctolagus cuniculus
-
muscle
-
Blattidae
-
skin neonatal rats Rattus norvegicus
-
spleen
-
Homo sapiens
-
spleen
-
Oryctolagus cuniculus
-
spore
-
Bacillus subtilis
-

Specific Activity [micromol/min/mg]

Specific Activity Minimum [µmol/min/mg] Specific Activity Maximum [µmol/min/mg] Comment Organism
60
-
isozyme II Rattus norvegicus
1000
-
liver isozyme III Rattus norvegicus
1062
-
liver, mitochondria Bos taurus
1810
-
muscle Sus scrofa
1900
-
-
Rattus norvegicus
1900
-
-
Saccharomyces cerevisiae
1920
-
muscle Homo sapiens
2200
-
muscle Oryctolagus cuniculus

Substrates and Products (Substrate)

Substrates Comment Substrates Organism Products Comment (Products) Rev. Reac.
ADP + ADP
-
Bacillus subtilis ATP + AMP
-
r
ADP + ADP
-
Mus musculus ATP + AMP
-
r
ADP + ADP
-
Escherichia coli ATP + AMP
-
r
ADP + ADP
-
Homo sapiens ATP + AMP
-
r
ADP + ADP
-
Rattus norvegicus ATP + AMP
-
r
ADP + ADP
-
Sus scrofa ATP + AMP
-
r
ADP + ADP
-
Saccharomyces cerevisiae ATP + AMP
-
r
ADP + ADP
-
Bos taurus ATP + AMP
-
r
ADP + ADP
-
Triticum aestivum ATP + AMP
-
r
ADP + ADP
-
Oryctolagus cuniculus ATP + AMP
-
r
ADP + ADP
-
Physarum polycephalum ATP + AMP
-
r
ADP + ADP
-
Thiobacillus denitrificans ATP + AMP
-
r
ADP + ADP
-
Citrus limon ATP + AMP
-
r
ADP + ADP
-
Blattidae ATP + AMP
-
r
ADP + ADP facilitates storage and use of the high energy of the adenine nucleotides, involved in maintenance of equilibrium among adenine nucleotides and maintenance of energy charge, important to energy economy of living systems Bacillus subtilis ?
-
r
ADP + ADP facilitates storage and use of the high energy of the adenine nucleotides, involved in maintenance of equilibrium among adenine nucleotides and maintenance of energy charge, important to energy economy of living systems Mus musculus ?
-
r
ADP + ADP facilitates storage and use of the high energy of the adenine nucleotides, involved in maintenance of equilibrium among adenine nucleotides and maintenance of energy charge, important to energy economy of living systems Escherichia coli ?
-
r
ADP + ADP facilitates storage and use of the high energy of the adenine nucleotides, involved in maintenance of equilibrium among adenine nucleotides and maintenance of energy charge, important to energy economy of living systems Homo sapiens ?
-
r
ADP + ADP facilitates storage and use of the high energy of the adenine nucleotides, involved in maintenance of equilibrium among adenine nucleotides and maintenance of energy charge, important to energy economy of living systems Rattus norvegicus ?
-
r
ADP + ADP facilitates storage and use of the high energy of the adenine nucleotides, involved in maintenance of equilibrium among adenine nucleotides and maintenance of energy charge, important to energy economy of living systems Sus scrofa ?
-
r
ADP + ADP facilitates storage and use of the high energy of the adenine nucleotides, involved in maintenance of equilibrium among adenine nucleotides and maintenance of energy charge, important to energy economy of living systems Saccharomyces cerevisiae ?
-
r
ADP + ADP facilitates storage and use of the high energy of the adenine nucleotides, involved in maintenance of equilibrium among adenine nucleotides and maintenance of energy charge, important to energy economy of living systems Bos taurus ?
-
r
ADP + ADP facilitates storage and use of the high energy of the adenine nucleotides, involved in maintenance of equilibrium among adenine nucleotides and maintenance of energy charge, important to energy economy of living systems Triticum aestivum ?
-
r
ADP + ADP facilitates storage and use of the high energy of the adenine nucleotides, involved in maintenance of equilibrium among adenine nucleotides and maintenance of energy charge, important to energy economy of living systems Oryctolagus cuniculus ?
-
r
ADP + ADP facilitates storage and use of the high energy of the adenine nucleotides, involved in maintenance of equilibrium among adenine nucleotides and maintenance of energy charge, important to energy economy of living systems Physarum polycephalum ?
-
r
ADP + ADP facilitates storage and use of the high energy of the adenine nucleotides, involved in maintenance of equilibrium among adenine nucleotides and maintenance of energy charge, important to energy economy of living systems Thiobacillus denitrificans ?
-
r
ADP + ADP facilitates storage and use of the high energy of the adenine nucleotides, involved in maintenance of equilibrium among adenine nucleotides and maintenance of energy charge, important to energy economy of living systems Citrus limon ?
-
r
ADP + ADP facilitates storage and use of the high energy of the adenine nucleotides, involved in maintenance of equilibrium among adenine nucleotides and maintenance of energy charge, important to energy economy of living systems Blattidae ?
-
r
ATP + AMP highly specific Rattus norvegicus ADP + ADP
-
r
ATP + AMP substrates in decreasing order of activity, in the presence of Mn2+: ATP, 2'-dATP, CTP, GTP, UTP, ITP Oryctolagus cuniculus ADP + ADP
-
r
ATP + AMP specificity for AMP-site is much more rigorous than for ATP-site Bacillus subtilis ADP + ADP
-
r
ATP + AMP specificity for AMP-site is much more rigorous than for ATP-site Mus musculus ADP + ADP
-
r
ATP + AMP specificity for AMP-site is much more rigorous than for ATP-site Escherichia coli ADP + ADP
-
r
ATP + AMP specificity for AMP-site is much more rigorous than for ATP-site Homo sapiens ADP + ADP
-
r
ATP + AMP specificity for AMP-site is much more rigorous than for ATP-site Rattus norvegicus ADP + ADP
-
r
ATP + AMP specificity for AMP-site is much more rigorous than for ATP-site Sus scrofa ADP + ADP
-
r
ATP + AMP specificity for AMP-site is much more rigorous than for ATP-site Saccharomyces cerevisiae ADP + ADP
-
r
ATP + AMP specificity for AMP-site is much more rigorous than for ATP-site Bos taurus ADP + ADP
-
r
ATP + AMP specificity for AMP-site is much more rigorous than for ATP-site Triticum aestivum ADP + ADP
-
r
ATP + AMP specificity for AMP-site is much more rigorous than for ATP-site Oryctolagus cuniculus ADP + ADP
-
r
ATP + AMP specificity for AMP-site is much more rigorous than for ATP-site Physarum polycephalum ADP + ADP
-
r
ATP + AMP specificity for AMP-site is much more rigorous than for ATP-site Thiobacillus denitrificans ADP + ADP
-
r
ATP + AMP specificity for AMP-site is much more rigorous than for ATP-site Citrus limon ADP + ADP
-
r
ATP + AMP specificity for AMP-site is much more rigorous than for ATP-site Blattidae ADP + ADP
-
r
ATP + AMP substrates in decreasing order of activity, in the presence of Mg2+: ATP, dATP, GTP, ITP Saccharomyces cerevisiae ADP + ADP
-
r
ITP + AMP
-
Bos taurus IDP + ADP
-
?
ITP + AMP poor substrate Saccharomyces cerevisiae IDP + ADP
-
?

Subunits

Subunits Comment Organism
dimer isozyme III, at concentrations above 3 mg/ml, dimers and trimers of MW 46000 and 68000 are formed Rattus norvegicus
trimer isozyme III, at concentrations above 3 mg/ml, dimers and trimers of MW 46000 and 68000 are formed Rattus norvegicus

pI Value

Organism Comment pI Value Maximum pI Value
Oryctolagus cuniculus muscle enzyme
-
6.1
Rattus norvegicus liver type enzymes
-
7.5
Bos taurus liver type enzymes
-
7.5