1.3.1.13: prephenate dehydrogenase (NADP+)
This is an abbreviated version!
For detailed information about prephenate dehydrogenase (NADP+), go to the full flat file.
Reaction
Synonyms
11415867, CM-PD, MtPDH1, PD-CM-PDT, PDH1, PRDH, prephenate (nicotinamide adenine dinucleotide phosphate) dehydrogenase, prephenate dehydrogenase, prephenate-pretyrosine dehydrogenase, tyrA, TyrAp, XD72_2094
ECTree
Advanced search results
Reference
Reference on EC 1.3.1.13 - prephenate dehydrogenase (NADP+)
for references in articles please use BRENDA:EC1.3.1.13
Please use the Reference Search for a specific query.
Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
Waldner-Sander, S.; Keller, B.; Keller, E.; Lingens, F.
Zur Biosynthese von Phenylalanin und Tyrosin bei Flavobakterien
Hoppe-Seyler's Z. Physiol. Chem.
364
1467-1473
1983
Flavobacterium sp.
Gamborg, O.L.; Keeley, F.W.
Aromatic metabolism in plants I. A study of the prephenate dehydrogenase from bean plants
Biochim. Biophys. Acta
115
65-72
1966
Klebsiella aerogenes, no activity in Beta vulgaris subsp. vulgaris, no activity in Oryza sativa, no activity in Pisum sativum, no activity in Triticum aestivum, Phaseolus coccineus, Phaseolus vulgaris, Vicia faba, Vigna radiata
Rubin, J.L.; Jensen, R.A.
Enzymology of L-tyrosine biosynthesis in mung bean (Vigna radiata [L.] Wilczek)
Plant Physiol.
64
727-734
1979
Burkholderia cepacia, Comamonas testosteroni, Pseudomonas alkanolytica, Vigna radiata
Hall, G.C.; Flick, M.B.; Gherna, R.L.; Jensen, R.A.
Biochemical diversity for biosynthesis of aromatic amino acids among the cyanobacteria
J. Bacteriol.
149
65-78
1982
Anabaena sp., Fischerella sp., Lyngbya sp., no activity in Anabaena sp., no activity in Calothrix sp., no activity in Nostoc sp., no activity in Scytonema sp., no activity in Scytonema sp. 29171, no activity in Synechocystis sp., Nostoc sp., Synechococcus sp., Synechocystis sp.
Byng, G.S.; Berry, A.; Jensen, R.A.
Evolutionary implications of features of aromatic amino acid biosynthesis in the genus Acinetobacter
Arch. Microbiol.
143
122-129
1985
Acinetobacter calcoaceticus, Acinetobacter lwoffii, Acinetobacter sp., Acinetobacter sp. C1W
Shlaifer, I.; Quashie, P.K.; Kim, H.Y.; Turnbull, J.L.
Biochemical characterization of TyrA enzymes from Ignicoccus hospitalis and Haemophilus influenzae: A comparative study of the bifunctional and monofunctional dehydrogenase forms
Biochim. Biophys. Acta
1865
312-320
2017
Ignicoccus hospitalis (A8AAX2)
Shlaifer, I.; Turnbull, J.L.
Characterization of two key enzymes for aromatic amino acid biosynthesis in symbiotic archaea
Extremophiles
20
503-514
2016
Ignicoccus hospitalis (A8AAX2), Ignicoccus hospitalis, Nanoarchaeum equitans
Schenck, C.A.; Chen, S.; Siehl, D.L.; Maeda, H.A.
Non-plastidic, tyrosine-insensitive prephenate dehydrogenases from legumes
Nat. Chem. Biol.
11
52-57
2015
Glycine max, Medicago truncatula, no activity in Arabidopsis thaliana
Holland, C.; Jez, J.
Reaction mechanism of prephenate dehydrogenase from the alternative tyrosine biosynthesis pathway in plants
ChemBioChem
19
1132-1136
2018
Glycine max
Schenck, C.; Men, Y.; Maeda, H.
Conserved molecular mechanism of TyrA dehydrogenase substrate specificity underlying alternative tyrosine biosynthetic pathways in plants and microbes
Front. Mol. Biosci.
4
73
2017
Methanothrix harundinacea (A0A101IGG2)
html completed