1.8.4.11: peptide-methionine (S)-S-oxide reductase

This is an abbreviated version!
For detailed information about peptide-methionine (S)-S-oxide reductase, go to the full flat file.

Reaction

L-methionine (S)-sulfoxide
+
thioredoxin
=
L-methionine
+
thioredoxin disulfide
+
H2O

Synonyms

ecdysone-induced protein 28/29 kDa, FMsr, LMJF_07_1140, methionine S-oxide reductase (S-form oxidizing), methionine sulfoxide reductase, methionine sulfoxide reductase A, methionine sulfoxide reductases A, methionine sulfoxide-S-reductase, methionine sulphoxide reductase, methionine sulphoxide reductase A, methionine-S-sulfoxide reductase, MetSO-L12 reductase, More, mrsA, MSR, MSR10, MSR180, MsrA, MSRA-1, MsrA/B, MsrA/MsrB, MSRA2, MSRA4, MsrABTk, MsrBA, Peptide Met(O) reductase, peptide methionine S-sulfoxide reductase, peptide methionine sulfoxide reductase, peptide methionine sulfoxide reductase A, peptide methionine sulfoxide reductase type A, peptide methionine sulphoxide reductase, peptide-methionine (S)-S-oxide reductase, peptide-methionine sulfoxide reductase, PilA, PilB, PilB protein, PMSR, PMSRA, protein-methionine-S-oxide-reductase, sulindac reductase

ECTree

     1 Oxidoreductases
         1.8 Acting on a sulfur group of donors
             1.8.4 With a disulfide as acceptor
                1.8.4.11 peptide-methionine (S)-S-oxide reductase

Systematic Name

Systematic Name on EC 1.8.4.11 - peptide-methionine (S)-S-oxide reductase

Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
SYSTEMATIC NAME
IUBMB Comments
peptide-L-methionine:thioredoxin-disulfide S-oxidoreductase [L-methionine (S)-S-oxide-forming]
The reaction occurs in the reverse direction to that shown above. The enzyme exhibits high specificity for the reduction of the S-form of L-methionine S-oxide, acting faster on the residue in a peptide than on the free amino acid [9]. On the free amino acid, it can also reduce D-methionine (S)-S-oxide but more slowly [9]. The enzyme plays a role in preventing oxidative-stress damage caused by reactive oxygen species by reducing the oxidized form of methionine back to methionine and thereby reactivating peptides that had been damaged. In some species, e.g. Neisseria meningitidis, both this enzyme and EC 1.8.4.12, peptide-methionine (R)-S-oxide reductase, are found within the same protein whereas, in other species, they are separate proteins [1,4]. The reaction proceeds via a sulfenic-acid intermediate [5,10].