Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
107364096
49 kDa subunit, gene name
13 kDa differentiation-associated protein
-
-
-
-
AIF-homologous mitochondrion-associated inducer of death
-
alternative complex I
-
-
alternative NADH oxidoreductase
-
-
alternative NADH: ubiquinone oxidoreductase
-
-
alternative NADH:ubiquinone oxidoreductase
apoptosis-inducing factor 1
-
artificial mediator accepting pyridine nuclöeotide oxidoreductase
-
-
Cell adhesion protein SQM1
-
-
-
-
Cell death-regulatory protein GRIM-19
-
-
-
-
coenzyme Q reductase
-
-
-
-
complex I (electron transport chain)
-
-
-
-
complex I (mitochondrial electron transport)
-
-
-
-
complex I (NADH:Q1 oxidoreductase)
-
-
-
-
complex I dehydrogenase
-
-
-
-
dihydronicotinamide adenine dinucleotide-coenzyme Q reductase
-
-
-
-
DPNH-coenzyme Q reductase
-
-
-
-
DPNH-ubiquinone reductase
-
-
-
-
electron transfer complex I
-
-
-
-
energy-converting NADPH:ubiquinone oxidoreductase
-
-
external alternative NAD(P)H dehydrogenase
-
-
Gene associated with retinoic-interferon-induced mortality 19 protein
-
-
-
-
Hypothetical protein Walter
-
-
-
-
Internal NADH dehydrogenase
mitochondrial electron transport complex 1
-
-
-
-
mitochondrial electron transport complex I
-
-
-
-
mitochondrial NADH dehydrogenase
-
-
mitochondrial NADH dehydrogenase complex
-
mitochondrial NADH:ubiquinone oxidoreductase
mitochondrial proton-pumping NADH-ubiquinone oxidoreductase
-
NADH coenzyme Q dehydrogenase
-
-
NADH coenzyme Q1 reductase
-
-
-
-
NADH dehydrogenase 1 alpha subcomplex 5
-
NDUFA5
NADH dehydrogenase subunit 5
-
-
NADH dehydrogenase [ubiquinone] 1
alpha subcomplex subunit 10
NADH-coenzyme Q oxidoreductase
-
-
-
-
NADH-coenzyme Q reductase
-
-
-
-
NADH-CoQ reductase
-
-
-
-
NADH-ferricyanide reductase
-
-
-
-
NADH-Q1 oxidoreductase
-
-
NADH-Q6 oxidoreductase
-
-
-
-
NADH-quinone (NADH-ferricyanide) reductase
-
-
NADH-quinone oxidoreductase
NADH-ubiquinone oxidoreductase
NADH-ubiquinone oxidoreductase (complex I)
-
-
NADH-ubiquinone reductase
NADH-ubiquinone-1 reductase
-
-
-
-
NADH: n-decylubiquinone oxidoreductase
-
-
NADH: ubiquinone oxidoreductase
-
-
NADH: ubiquinone reductase
-
-
NADH:caldariella quinone oxidoreductase
-
-
NADH:coenzyme Q oxidoreductase
-
-
NADH:CoQ1 oxidoreductase
-
-
NADH:cytochrome c reductase
-
-
NADH:DBQ oxidoreductase
-
-
NADH:external quinone reductase
-
-
NADH:HAR (III) reductase
-
-
NADH:quinone oxidoreductase
-
-
NADH:ubiquinone oxidoreductase
NADH:ubiquinone oxidoreductase complex
-
-
-
-
NADH:ubiquinone-1 oxidoreductase
-
-
NADH–ubiquinone Q1 oxidoreductase
-
-
Ndh/NdhA–type II NADH:(mena)quinone oxidoreductase
-
-
nicotinamide adenine dinucleotide-ubiquinone oxidoreductase
-
-
proton-pumping NADH-ubiquinone oxidoreductase
proton-pumping NADH:ubiquinone oxidoreductase
proton-translocating NADH-quinone oxidoreductase
-
-
proton-translocating NADH: ubiquinone oxidoreductase
-
-
proton-translocating NADH:ubiquinone oxidoreductase
-
-
reduced nicotinamide adenine dinucleotide-coenzyme Q reductase
-
-
-
-
reductase, ubiquinone
-
-
-
-
respiratory chain complex I
type 2 NADH:quinone oxidoreductase
-
-
type I dehydrogenase
-
-
-
-
type I NADH dehydrogenase
type II NADH dehydrogenase
type II NADH-quinone oxidoreductase
-
-
type II NADH:dehydrogenase
-
-
type II NADH:quinone oxidoreductase
-
-
type-2 NADH:quinone oxidoreductase
-
-
type-II calcium-dependent NADH dehydrogenase
A8JI60
-
type-II NADH dehydrogenase
-
-
type-II NADH dehydrogenase TgNDH2-I
-
-
type-II NADH-menaquinone oxidoreductase
-
-
ubiquinone reductase
-
-
-
-
Ubiquinone-binding protein
-
-
-
-
alternative NADH:ubiquinone oxidoreductase

-
-
alternative NADH:ubiquinone oxidoreductase
-
-
-
complex 1

-
-
complex I

-
-
complex I
-
-
658174, 671827, 671882, 672013, 672126, 672129, 672176, 672291, 672597, 674694, 675345, 676868, 696270, 696288, 696312, 696510, 696745, 711290, 714281, 714993, 724383, 724564, 725003, 725491
complex I
Chlamydomonas sp.
-
-
complex I
-
-
659331, 672041, 672043, 672349, 673620, 674624, 675494, 690948, 696380, 698799, 725005, 725142, 725443, 725517
complex I
-
in mitochondria
complex I
-
in mitochondria
-
complex I
-
-
672974, 675345, 691039, 691049, 692447, 692992, 693815, 694192, 694352, 694936, 695189, 726174
complex I
-
in mitochondria
complex I
-
-
657845, 659387, 659946, 690886, 691037, 691058, 692231, 693532, 693720, 693745, 693773, 695063
Internal NADH dehydrogenase

-
-
-
-
Internal NADH dehydrogenase
-
-
mitochondrial complex I

-
mitochondrial complex I
-
-
mitochondrial NADH:ubiquinone oxidoreductase

-
-
mitochondrial NADH:ubiquinone oxidoreductase
-
-
Nad1

-
NADH dehydrogenase

-
-
NADH-CoQ oxidoreductase

-
-
-
-
NADH-CoQ oxidoreductase
-
-
NADH-CoQ oxidoreductase
-
-
NADH-quinone oxidoreductase

-
-
NADH-quinone oxidoreductase
-
-
NADH-quinone oxidoreductase
-
-
NADH-quinone reductase

-
-
-
-
NADH-quinone reductase
-
-
NADH-ubiquinone oxidoreductase

-
-
-
-
NADH-ubiquinone oxidoreductase
-
-
NADH-ubiquinone oxidoreductase
-
NADH-ubiquinone oxidoreductase
-
-
NADH-ubiquinone oxidoreductase
-
-
NADH-ubiquinone oxidoreductase
-
-
NADH-ubiquinone oxidoreductase
-
-
NADH-ubiquinone oxidoreductase
-
-
NADH-ubiquinone oxidoreductase
-
-
NADH-ubiquinone oxidoreductase
-
-
NADH-ubiquinone oxidoreductase
Vitis vinifera x Vitis vinifera
-
-
NADH-ubiquinone reductase

-
-
-
-
NADH-ubiquinone reductase
-
-
NADH:HAR reductase

-
-
NADH:Q oxidoreductase

-
-
-
-
NADH:Q oxidoreductase
-
-
NADH:ubiquinone oxidoreductase

-
-
NADH:ubiquinone oxidoreductase
-
-
NADH:ubiquinone oxidoreductase
-
-
NADH:ubiquinone oxidoreductase
-
NADH:ubiquinone oxidoreductase
-
-
NADH:ubiquinone oxidoreductase
-
-
658135, 658174, 671827, 671882, 672126, 672291, 672348, 674694, 675345, 676868, 696288, 696312, 696745, 724383, 725003, 725491
NADH:ubiquinone oxidoreductase
-
-
NADH:ubiquinone oxidoreductase
-
-
NADH:ubiquinone oxidoreductase
-
-
NADH:ubiquinone oxidoreductase
Chlamydomonas sp.
-
-
NADH:ubiquinone oxidoreductase
-
-
NADH:ubiquinone oxidoreductase
-
-
NADH:ubiquinone oxidoreductase
-
-
NADH:ubiquinone oxidoreductase
-
-
659331, 671940, 672008, 672041, 672349, 674624, 675494, 690948, 696147, 724310, 725142
NADH:ubiquinone oxidoreductase
-
-
-
NADH:ubiquinone oxidoreductase
-
-
-
NADH:ubiquinone oxidoreductase
-
-
-
NADH:ubiquinone oxidoreductase
-
-
NADH:ubiquinone oxidoreductase
-
-
NADH:ubiquinone oxidoreductase
-
-
NADH:ubiquinone oxidoreductase
-
-
NADH:ubiquinone oxidoreductase
-
-
NADH:ubiquinone oxidoreductase
-
-
NADH:ubiquinone oxidoreductase
-
-
NADH:ubiquinone oxidoreductase
-
-
NADH:ubiquinone oxidoreductase
-
-
NADH:ubiquinone oxidoreductase
-
-
NADH:ubiquinone oxidoreductase
-
-
NADH:ubiquinone oxidoreductase
-
-
NADH:ubiquinone oxidoreductase
-
-
NADH:ubiquinone oxidoreductase
-
-
NADH:ubiquinone oxidoreductase
-
-
NADH:ubiquinone oxidoreductase
-
-
NADH:ubiquinone oxidoreductase
-
-
ND1

-
-
NDH

-
-
NDH-1

-
-
NDH-1
-
proton-pumping NADH-ubiquinone oxidoreductase
NDH-1
-
the NuoG subunit of the type I NADH dehydrogenase
NDH-1
-
the NuoG subunit of the type I NADH dehydrogenase
-
NDH-1
-
prokaryotic complex I homolog
NDH-2

-
-
NDH-2
-
non-proton-pumping NADH-ubiquinone oxidoreductase
NDH-2
-
non-proton-pumping NADH-ubiquinone oxidoreductase
NDH-2A

-
NDH2

-
-
Ndi1p

-
-
NrcN

-
PAI

-
-
PAI
Vitis vinifera x Vitis vinifera
-
-
proton-pumping NADH-ubiquinone oxidoreductase

-
-
proton-pumping NADH-ubiquinone oxidoreductase
-
-
-
proton-pumping NADH-ubiquinone oxidoreductase
-
-
proton-pumping NADH:ubiquinone oxidoreductase

-
-
proton-pumping NADH:ubiquinone oxidoreductase
-
-
RCC-I

-
-
respiratory chain complex I

-
-
respiratory chain complex I
-
-
respiratory chain complex I
-
-
respiratory complex I

-
-
respiratory complex I
-
-
respiratory complex I
-
-
-
respiratory complex I
-
-
respiratory complex I
-
-
respiratory complex I
-
-
TT_C1484

gene name
type I NADH dehydrogenase

-
-
type I NADH dehydrogenase
-
-
-
type I NADH dehydrogenase
-
-
type II NADH dehydrogenase

-
-
type II NADH dehydrogenase
-
-
-
type II NADH dehydrogenase
-
-
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
2 ferricyanide + deamino-NADH
2 ferrocyanide + deamino-NAD+ + H+
2 ferricyanide + NADH
2 ferrocyanide + NAD+ + H+
2 ferricyanide + NADPH
2 ferrocyanide + NADP+ + H+
2 ferricytochrome c + NADH
2 ferrocytochrome c + NAD+ + H+
2,3-dimethyl-1,4-naphthoquinone + NADH + H+
2,3-dimethyl-1,4-hydronaphthoquinol + NAD+
-
-
-
-
?
2-methyl-1,4-naphthoquinone + NADH + H+
2-methyl-1,4-naphthoquinol + NAD+
amplex red + NADH + O2
resorufin + NAD+ + H2O2
-
the rate of H2O2 formation by complex I strongly depends upon the NAD+/NADH ratio
-
-
?
benzoquinone + NADH + H+
benzohydroquinone + NAD+
-
-
-
-
?
deamino-NADH + dimethoxy-5-methyl-6-decyl-1,4-benzoquinone
deamino-NAD+ + reduced dimethoxy-5-methyl-6-decyl-1,4-benzoquinone
-
-
-
-
?
deamino-NADH + ubiquinone
deamino-NAD+ + ubiquinol
-
-
-
-
?
deamino-nicotinamide-adeninedinucleotide + n-decylubiquinone
? + n-decylubiquinol
-
-
-
-
?
decyl-ubiquinone + NADH
decyl-ubiquinol + NAD+
decyl-ubiquinone + NADH + H+
decyl-ubiquinol + NAD+
-
-
-
-
?
dihydroethidium + O2
ethidium + H2O2
-
dihydroethidium reduction shows that, upon reducing O2, it produces approximately 20% superoxide and 80% H2O2
-
-
?
malate + pyruvate + O2
?
-
-
-
-
?
NADH + 1,1'-carbamoylmethylviologen
NAD+ + reduced 1,1'-carbamoylmethylviologen
-
-
-
-
r
NADH + 2,3-dimethoxy-5-methyl-6-isoprenyl-1,4-benzoquinone
NAD+ + ?
-
-
-
-
?
NADH + 2,3-dimethoxy-5-methyl-6-[(6-methyl-2,3-dihydroimidazo[2,1-b][1,3]thiazol-5-yl)methyl]benzo-1,4-quinone
NAD+ + ?
NADH + 2,3-dimethoxy-5-methyl-6-[(6-methylimidazo[2,1-b][1,3]thiazol-5-yl)methyl]benzo-1,4-quinone
NAD+ + ?
-
-
-
-
?
NADH + 2,3-dimethoxy-5-methyl-6-[(6-phenylimidazo[2,1-b][1,3]thiazol-5-yl)methyl]benzo-1,4-quinone
NAD+ + ?
-
-
-
-
?
NADH + 2-methyl-1,4-naphthoquinone
NAD+ + 2-methyl-1,4-naphthoquinol
-
-
-
-
?
NADH + 2-methylnaphthoquinone
NAD+ + ?
NADH + 2-[(2,6-dimethylimidazo[2,1-b][1,3]thiazol-5-yl)methyl]-5,6-dimethoxy-3-methylbenzo-1,4-quinone
NAD+ + ?
-
-
-
-
?
NADH + 2-[(2-chloro-6-methylimidazo[2,1-b][1,3]thiazol-5-yl)methyl]-5,6-dimethoxy-3-methylbenzo-1,4-quinone
NAD+ + ?
-
-
-
-
?
NADH + 2-[(2-chloro-6-phenylimidazo[2,1-b][1,3]thiazol-5-yl)methyl]-5,6-dimethoxy-3-methylbenzo-1,4-quinone
NAD+ + ?
-
-
-
-
?
NADH + 2-[(6-chloro-2,3-dihydroimidazo[2,1-b][1,3]thiazol-5-yl)methyl]-5,6-dimethoxy-3-methylbenzo-1,4-quinone
NAD+ + ?
-
-
-
-
?
NADH + 2-[(6-chloro-2-methylimidazo[2,1-b][1,3]thiazol-5-yl)methyl]-5,6-dimethoxy-3-methylbenzo-1,4-quinone
NAD+ + ?
-
-
-
-
?
NADH + 2-[(6-chloroimidazo[2,1-b][1,3]thiazol-5-yl)methyl]-5,6-dimethoxy-3-methylbenzo-1,4-quinone
NAD+ + ?
-
-
-
-
?
NADH + 3'-acetyl pyridine adenine dinucleotide
NAD+ + ?
-
-
-
-
?
NADH + 6-decyl-ubiquinone
NAD+ + 6-decyl-ubiquinol
-
-
-
-
?
NADH + anthraquinone-2,6-disulfonate
NAD+ + ?
-
-
-
-
?
NADH + benzoquinone
NAD+ + benzoquinol
-
-
-
-
?
NADH + benzoquinone + H+
NAD+ + benzoquinol
-
-
-
-
?
NADH + caldariellaquinone
NAD+ + caldariellaquinol
NADH + coenzyme Q0
NAD+ + ?
-
-
-
-
?
NADH + coenzyme Q1
NAD+ + ?
-
-
-
-
?
NADH + coenzyme Q1 + H+
NAD+ + reduced coenzyme Q1
-
-
-
-
?
NADH + coenzyme Q2
NAD+ + ?
-
-
-
-
?
NADH + decyl-ubiquinone
NAD+ + decyl-ubiquinol
-
-
-
-
?
NADH + decyl-ubiquinone + H+
NAD+ + decyl-ubiquinol
-
-
-
-
?
NADH + decylubiquinone
NAD+ + decylubiquinol
NADH + decylubiquinone + H+
NAD+ + decylubiquinol
-
-
-
-
?
NADH + duroquinone
NAD+ + ?
-
-
-
-
?
NADH + duroquinone
NAD+ + duroquinol
NADH + FAD
NAD+ + FADH2
-
-
-
-
?
NADH + Fe(CN)63-
?
-
-
-
-
?
NADH + H+ + 1,4-benzoquinone
NAD+ + 1,4-benzoquinol
-
-
-
-
?
NADH + H+ + 1,4-naphthoquinone
NAD+ + 1,4-naphthoquinol
NADH + H+ + 2,5-dimethyl-1,4-benzoquinone
NAD+ + 2,5-dimethyl-1,4-benzoquinol
-
-
-
-
?
NADH + H+ + 2-methyl-1,4-benzoquinone
NAD+ + 2-methyl-1,4-benzoquinol
-
-
-
-
?
NADH + H+ + 2-methyl-1,4-naphthoquinone
NAD+ + 2-methyl-1,4-naphthoquinol
-
-
-
-
?
NADH + H+ + 4-nitroacetophenone
NAD+ + ?
-
-
-
-
?
NADH + H+ + 4-nitrobenzaldehyde
NAD+ + ?
-
-
-
-
?
NADH + H+ + 4-nitrobenzoic acid
NAD+ + ?
-
-
-
-
?
NADH + H+ + 5,8-dioxo-1,4-naphthoquinone
NAD+ + 5,8-dioxo-1,4-naphthoquinol
-
-
-
-
?
NADH + H+ + 5-oxo-1,4-naphthoquinone
NAD+ + 5-oxo-1,4-naphthoquinol
-
-
-
-
?
NADH + H+ + 9,10-phenanthrenequinone
NAD+ + 9,10-phenanthrenequinol
-
-
-
-
?
NADH + H+ + adriamycin
NAD+ + ?
-
-
-
-
?
NADH + H+ + coenzyme Q1
NAD+ + reduced coenzyme Q1
NADH + H+ + coenzyme Q2
NAD+ + reduced coenzyme Q2
-
-
-
-
?
NADH + H+ + decylubiquinone
NAD+ + decylubiquinol
NADH + H+ + duroquinone
NAD+ + duroquinol
NADH + H+ + idebenone
NAD+ + ?
-
studies of ubiquinone reduction by isolated complex I are problematic because the extremely hydrophobic natural substrate, ubiquinone-10, must be substituted with a relatively hydrophilic analogue (such as ubiquinone-1). Hydrophilic ubiquinones are reduced by an additional, non-energy-transducing pathway. Inhibitor-insensitive ubiquinone reduction occurs by a ping-pong type mechanism, catalyzed by the flavin mononucleotide cofactor in the active site for NADH oxidation. Moreover, semiquinones produced at the flavin site initiate redox cycling reactions with molecular oxygen, producing superoxide radicals and hydrogen peroxide. The ubiquinone reactant is regenerated, so the NADH:Q reaction becomes superstoichiometric. Idebenone, an artificial ubiquinone, reacts at the flavin site
-
-
?
NADH + H+ + menadione
NAD+ + menadiol
NADH + H+ + menaquinone
NAD+ + menaquinol
-
the enzyme plays an essential role in maintaining a reduced ubiquinone-pool during infection (Mycobacterium tuberculosis is the causative agents of tuberculosis). The enzyme is not only essential to parasite survival in vivo but may also contribute to the severity and outcome of disease. Type II NADH:quinone oxidoreductase the membrane-bound respiratory enzyme differs from the canonical NADH:dehydrogenase (complex I), because it is not involved in the vectorial transfer of protons across membranes. Mycobacterium tuberculosis contains a branched respiratory chain terminating in a cytochrome bd (quinol) oxidase and an aa3-type cytochrome c oxidase. Both chains are fed by a menaquinol (MQH2) pool that is generated by four dehydrogenases; one succinate menaquinone oxidoreductase (SQR), one multimeric type I NADH: dehydrogenase (complex I), and two type II NADH: menaquinone oxidoreductases (ndh and ndhA). Transposon insertion knockout strategy reveals that disruption of the ndh gene is lethal
-
-
?
NADH + H+ + menaquinone
NAD+ + menaquinone
-
-
-
-
?
NADH + H+ + nifuroxime
NAD+ + ?
-
-
-
-
?
NADH + H+ + nitrobenzene
NAD+ + ?
-
-
-
-
?
NADH + H+ + nitrofurantoin
NAD+ + ?
-
-
-
-
?
NADH + H+ + oxidized dichlorophenolindophenol
NAD+ + reduced dichlorophenolindophenol
-
-
-
-
?
NADH + H+ + tetramethyl-1,4-benzoquinone
NAD+ + tetramethyl-1,4-benzoquinol
-
-
-
-
?
NADH + H+ + ubiquinone
NAD+ + ubiquinol
NADH + H+ + ubiquinone-0
NAD+ + ubiquinol-0
NADH + H+ + ubiquinone-1
NAD+ + ubiquinol-1
NADH + H+ + ubiquinone-10
NAD+ + ubiquinol-10
NADH + H+ + ubiquinone-2
NAD+ + ubiquinol-2
-
-
-
-
?
NADH + H+ + vitamin K2
NAD+ + reduced vitamin K2
NADH + H+ + vitamin K2
NAD+ + vitamin K2
NADH + hexaamineruthenium(III) chloride
NAD+ + ?
-
-
-
-
?
NADH + hexaammineruthenium-(III)-chloride
NAD+ + ?
-
-
-
-
?
NADH + hexaammineruthenium-III-chloride
NAD+ + ?
NADH + hexamineruthenium(III)-chloride
NAD+ + ?
-
-
-
-
?
NADH + hexammineruthenium-(III)-chloride
NAD+ + ?
NADH + menadione
NAD+ + menadiol
NADH + menadione
NAD+ + reduced menadione
-
-
-
-
?
NADH + menaquinone
NAD+ + menaquinol
-
-
-
-
?
NADH + n-decylubiquinone + 5 H+[side1]
NAD+ + n-decylubiquinol + 4H+[side2]
NADH + n-decylubiquinone + H+
NAD+ + n-decylubiquinol
NADH + naphthoquinone
NAD+ + naphthoquinol
-
-
-
-
?
NADH + nitroblue tetrazolium
NAD+ + reduced nitroblue tetrazolium
-
-
-
-
?
NADH + O2
NAD+ + superoxide radical
NADH + oxidized 2,6-dichlorophenolindophenol + H+
NAD+ + reduced 2,6-dichlorophenolindophenol
NADH + oxidized coenzyme Q1 + 5 H+[side1]
NAD+ + reduced coenzyme Q1 + 4 H+[side2]
-
-
-
?
NADH + oxidized coenzyme Q1 + 5 H+[side1]
NAD+ + reduced coenzyme Q1 + 4H+[side2]
-
-
-
?
NADH + phylloquinone
NAD+ + phylloquinol
-
-
-
-
?
NADH + plastoquinone
NAD+ + plastoquinol
NADH + ubiquinone
NAD+ + ubiquinol
NADH + ubiquinone + 6 H+[side 1]
NAD+ + ubiquinol + 7 H+[side 2]
NADH + ubiquinone + H+
NAD+ + ubiquinol
-
-
-
-
?
NADH + ubiquinone-0
NAD+ + ubiquinol-0
NADH + ubiquinone-1
NAD+ + reduced ubiquinone-1
-
-
-
-
?
NADH + ubiquinone-1
NAD+ + ubiquinol-1
NADH + ubiquinone-1 + 5 H+[side 1]
NAD+ + ubiquinol-1 + 4 H+[side 2]
NADH + ubiquinone-1 + H+
NAD+ + ubiquinol
-
-
-
-
?
NADH + ubiquinone-10
NAD+ + ubiquinol-10
NADH + ubiquinone-10 + 5 H+[side 1]
NAD+ + ubiquinol-10 + 4 H+[side 2]
-
-
-
-
?
NADH + ubiquinone-2
NAD+ + reduced ubiquinol-2
NADH + ubiquinone-2
NAD+ + ubiquinol-2
NADH + ubiquinone-6
NAD+ + ubiquinol-6
NADH + ubiquinone-8
NAD+ + ubiquinol-8
NADH + ubiquinone-9
NAD+ + ubiquinol-9
-
-
-
-
-
NADPH + 2-methylnaphthoquinone
NADP+ + ?
-
about 1% of the activity with NADH
-
-
?
NADPH + H+ + ubiquinone
NADP+ + ubiquinol
NADPH + H+ + ubiquinone-1
NADP+ + ubiquinol-1
-
at a slow rate
-
-
?
NADPH + ubiquinone + 6 H+[side 1]
NADP+ + ubiquinol + 7 H+[side 2]
-
NADPH is a poor substrate of the complex
-
-
?
oxidized 2,6-dichlorophenolindophenol + NADH + H+
reduced 2,6-dichlorophenolindophenol + NAD+
-
-
-
-
?
succinate + O2 + NAD+
NADH + ?
-
-
-
-
?
ubiquinone + NADH + H+
ubiquinol + NAD+
-
-
-
-
?
ubiquinone-1 + NADH + H+
ubiquinol-1 + NAD+
additional information
?
-
2 ferricyanide + deamino-NADH

2 ferrocyanide + deamino-NAD+ + H+
-
-
-
-
?
2 ferricyanide + deamino-NADH
2 ferrocyanide + deamino-NAD+ + H+
-
-
-
-
?
2 ferricyanide + NADH

2 ferrocyanide + NAD+ + H+
-
-
-
-
-
2 ferricyanide + NADH
2 ferrocyanide + NAD+ + H+
-
-
-
-
?
2 ferricyanide + NADH
2 ferrocyanide + NAD+ + H+
-
-
-
-
?
2 ferricyanide + NADH
2 ferrocyanide + NAD+ + H+
-
-
-
-
?
2 ferricyanide + NADH
2 ferrocyanide + NAD+ + H+
-
232.7% of the activity with ubiquinone-1
-
-
?
2 ferricyanide + NADH
2 ferrocyanide + NAD+ + H+
-
-
-
-
?
2 ferricyanide + NADH
2 ferrocyanide + NAD+ + H+
-
-
-
-
?
2 ferricyanide + NADH
2 ferrocyanide + NAD+ + H+
-
activity is 27.4fold of the activity with ubiquinone-1
-
-
?
2 ferricyanide + NADH
2 ferrocyanide + NAD+ + H+
-
-
-
-
?
2 ferricyanide + NADH
2 ferrocyanide + NAD+ + H+
-
-
-
?
2 ferricyanide + NADH
2 ferrocyanide + NAD+ + H+
-
-
-
-
?
2 ferricyanide + NADH
2 ferrocyanide + NAD+ + H+
-
-
-
-
?
2 ferricyanide + NADPH

2 ferrocyanide + NADP+ + H+
-
0.13% of the activity with NADH and ferricyanide
-
-
?
2 ferricyanide + NADPH
2 ferrocyanide + NADP+ + H+
-
about 1% of the activity with NADH
-
-
?
2 ferricytochrome c + NADH

2 ferrocytochrome c + NAD+ + H+
-
8.3% of the activity with ubiquinone-1
-
-
?
2 ferricytochrome c + NADH
2 ferrocytochrome c + NAD+ + H+
-
-
-
-
?
2 ferricytochrome c + NADH
2 ferrocytochrome c + NAD+ + H+
-
12%-16% of the activity with ubiquinone-1
-
-
?
2 ferricytochrome c + NADH
2 ferrocytochrome c + NAD+ + H+
-
-
-
-
?
2 ferricytochrome c + NADH
2 ferrocytochrome c + NAD+ + H+
-
-
-
-
?
2 ferricytochrome c + NADH
2 ferrocytochrome c + NAD+ + H+
-
-
-
-
?
2-methyl-1,4-naphthoquinone + NADH + H+

2-methyl-1,4-naphthoquinol + NAD+
-
specific for NADH
-
-
?
2-methyl-1,4-naphthoquinone + NADH + H+
2-methyl-1,4-naphthoquinol + NAD+
-
i.e. menadione
-
-
?
decyl-ubiquinone + NADH

decyl-ubiquinol + NAD+
-
-
-
-
?
decyl-ubiquinone + NADH
decyl-ubiquinol + NAD+
-
-
-
-
?
NADH + 2,3-dimethoxy-5-methyl-6-[(6-methyl-2,3-dihydroimidazo[2,1-b][1,3]thiazol-5-yl)methyl]benzo-1,4-quinone

NAD+ + ?
-
-
-
-
?
NADH + 2,3-dimethoxy-5-methyl-6-[(6-methyl-2,3-dihydroimidazo[2,1-b][1,3]thiazol-5-yl)methyl]benzo-1,4-quinone
NAD+ + ?
-
-
-
-
?
NADH + 2-methylnaphthoquinone

NAD+ + ?
-
-
-
-
?
NADH + 2-methylnaphthoquinone
NAD+ + ?
-
7.6% of the activity with ubiquinone-1
-
-
?
NADH + caldariellaquinone

NAD+ + caldariellaquinol
-
-
-
-
?
NADH + caldariellaquinone
NAD+ + caldariellaquinol
-
-
-
-
?
NADH + caldariellaquinone
NAD+ + caldariellaquinol
-
-
-
-
?
NADH + coenzyme Q10

?
-
-
-
-
?
NADH + coenzyme Q10
?
-
-
-
-
?
NADH + decylubiquinone

NAD+ + decylubiquinol
-
-
-
-
?
NADH + decylubiquinone
NAD+ + decylubiquinol
-
no activity with the enzymatically active subcomplexes Ilambda, IS, and IlamdaS at similar rates to complex I
-
-
?
NADH + decylubiquinone
NAD+ + decylubiquinol
-
ordered sequential mechanism in which the order of substrate bindings and product release is: NADH, decylubiquinone, decylubiquinol, NAD+
-
-
?
NADH + decylubiquinone
NAD+ + decylubiquinol
-
-
-
-
?
NADH + decylubiquinone
NAD+ + decylubiquinol
-
-
-
-
?
NADH + decylubiquinone
NAD+ + decylubiquinol
-
-
-
-
?
NADH + decylubiquinone
NAD+ + decylubiquinol
-
-
-
-
?
NADH + decylubiquinone
NAD+ + decylubiquinol
-
-
-
-
?
NADH + decylubiquinone
NAD+ + decylubiquinol
-
-
-
-
?
NADH + decylubiquinone
NAD+ + decylubiquinol
-
n-decylubiquinone
-
-
?
NADH + duroquinone

NAD+ + duroquinol
-
-
-
-
?
NADH + duroquinone
NAD+ + duroquinol
-
64.5% of the activity with ubiquinone-1
-
-
?
NADH + duroquinone
NAD+ + duroquinol
-
-
-
?
NADH + H+ + 1,4-naphthoquinone

NAD+ + 1,4-naphthoquinol
-
-
-
-
?
NADH + H+ + 1,4-naphthoquinone
NAD+ + 1,4-naphthoquinol
-
-
-
-
?
NADH + H+ + coenzyme Q1

NAD+ + reduced coenzyme Q1
-
-
-
-
?
NADH + H+ + coenzyme Q1
NAD+ + reduced coenzyme Q1
-
ordered sequential mechanism in which the order of substrate binding and product release is coenzyme Q1, NADH, NAD+ and reduced coenzyme coenzyme Q1
-
-
?
NADH + H+ + coenzyme Q1
NAD+ + reduced coenzyme Q1
-
-
-
-
?
NADH + H+ + coenzyme Q1
NAD+ + reduced coenzyme Q1
-
-
-
-
?
NADH + H+ + decylubiquinone

NAD+ + decylubiquinol
-
-
-
-
?
NADH + H+ + decylubiquinone
NAD+ + decylubiquinol
-
decylubiquinone is slightly better than ubiquinone-1 as electron acceptor
-
-
?
NADH + H+ + decylubiquinone
NAD+ + decylubiquinol
-
-
-
-
?
NADH + H+ + decylubiquinone
NAD+ + decylubiquinol
-
the enzyme is selective for NADH
-
-
?
NADH + H+ + decylubiquinone
NAD+ + decylubiquinol
-
-
-
?
NADH + H+ + decylubiquinone
NAD+ + decylubiquinol
-
-
-
?
NADH + H+ + duroquinone

NAD+ + duroquinol
-
-
-
?
NADH + H+ + duroquinone
NAD+ + duroquinol
-
-
-
?
NADH + H+ + menadione

NAD+ + menadiol
-
-
-
-
?
NADH + H+ + menadione
NAD+ + menadiol
-
-
-
?
NADH + H+ + menadione
NAD+ + menadiol
-
-
-
?
NADH + H+ + ubiquinone

NAD+ + ubiquinol
-
-
-
-
?
NADH + H+ + ubiquinone
NAD+ + ubiquinol
-
-
-
-
?
NADH + H+ + ubiquinone
NAD+ + ubiquinol
-
-
-
-
?
NADH + H+ + ubiquinone
NAD+ + ubiquinol
-
conserved lysine residues of the membrane subunit NuoM are involved in energy conversion by the proton-pumping NADH:ubiquinone oxidoreductase
-
-
?
NADH + H+ + ubiquinone
NAD+ + ubiquinol
-
the energy-converting NADH:ubiquinone oxidoreductase (respiratory complex I), couples the transfer of electrons from NADH to ubiquinone with the translocation of protons across the membrane
-
-
?
NADH + H+ + ubiquinone
NAD+ + ubiquinol
-
NADH:ubiquinone oxidoreductase or complex I is a large multisubunit assembly of the mitochondrial inner membrane that channels high-energy electrons from metabolic NADH into the electron transport chain. Its dysfunction is associated with a range of progressive neurological disorders, often characterized by a very early onset and short devastating course. Reduction in cellular complex I activity leads to a depolarization of the mitochondrial membrane potential, resulting in a decreased supply of mitochondrial ATP to the Ca2+-ATPases of the intracellular stores and thus to a reduced Ca2+ content of these stores
-
-
?
NADH + H+ + ubiquinone-0

NAD+ + ubiquinol-0
-
-
-
-
?
NADH + H+ + ubiquinone-0
NAD+ + ubiquinol-0
-
-
-
-
?
NADH + H+ + ubiquinone-0
NAD+ + ubiquinol-0
-
prefers ubiquinol-0 as an acceptor substrate, and can also use the artificial electron acceptors, menadione and dichlorophenol–indophenol
-
-
?
NADH + H+ + ubiquinone-1

NAD+ + ubiquinol-1
-
-
-
-
?
NADH + H+ + ubiquinone-1
NAD+ + ubiquinol-1
-
-
-
?
NADH + H+ + ubiquinone-1
NAD+ + ubiquinol-1
-
formation of the semiquinone signals during steady state electron transfer from NADH to ubiquinone-1
-
-
?
NADH + H+ + ubiquinone-1
NAD+ + ubiquinol-1
-
studies of ubiquinone reduction by isolated complex I are problematic because the extremely hydrophobic natural substrate, ubiquinone-10, must be substituted with a relatively hydrophilic analogue (such as ubiquinone-1). Hydrophilic ubiquinones are reduced by an additional, non-energy-transducing pathway. Inhibitor-insensitive ubiquinone reduction occurs by a ping-pong type mechanism, catalyzed by the flavin mononucleotide cofactor in the active site for NADH oxidation. Moreover, semiquinones produced at the flavin site initiate redox cycling reactions with molecular oxygen, producing superoxide radicals and hydrogen peroxide. The ubiquinone reactant is regenerated, so the NADH:Q reaction becomes superstoichiometric. Idebenone, an artificial ubiquinone, reacts at the flavin site
-
-
?
NADH + H+ + ubiquinone-1
NAD+ + ubiquinol-1
-
-
-
-
?
NADH + H+ + ubiquinone-1
NAD+ + ubiquinol-1
-
-
-
-
?
NADH + H+ + ubiquinone-1
NAD+ + ubiquinol-1
-
-
-
-
?
NADH + H+ + ubiquinone-1
NAD+ + ubiquinol-1
-
-
-
?
NADH + H+ + ubiquinone-1
NAD+ + ubiquinol-1
-
-
-
?
NADH + H+ + ubiquinone-10

NAD+ + ubiquinol-10
-
the natural substrate ubiquinone-10 is extremely hydrophobic
-
-
?
NADH + H+ + ubiquinone-10
NAD+ + ubiquinol-10
-
studies of ubiquinone reduction by isolated complex I are problematic because the extremely hydrophobic natural substrate, ubiquinone-10, must be substituted with a relatively hydrophilic analogue (such as ubiquinone-1). Hydrophilic ubiquinones are reduced by an additional, non-energy-transducing pathway. Inhibitor-insensitive ubiquinone reduction occurs by a ping-pong type mechanism, catalyzed by the flavin mononucleotide cofactor in the active site for NADH oxidation. Moreover, semiquinones produced at the flavin site initiate redox cycling reactions with molecular oxygen, producing superoxide radicals and hydrogen peroxide. The ubiquinone reactant is regenerated, so the NADH:Q reaction becomes superstoichiometric. Idebenone, an artificial ubiquinone, reacts at the flavin site
-
-
?
NADH + H+ + vitamin K2

NAD+ + reduced vitamin K2
-
-
-
?
NADH + H+ + vitamin K2
NAD+ + reduced vitamin K2
-
-
-
?
NADH + H+ + vitamin K2

NAD+ + vitamin K2
-
-
-
?
NADH + H+ + vitamin K2
NAD+ + vitamin K2
-
-
-
?
NADH + hexaammineruthenium-III-chloride

NAD+ + ?
-
-
-
-
?
NADH + hexaammineruthenium-III-chloride
NAD+ + ?
-
-
-
-
?
NADH + hexammineruthenium-(III)-chloride

NAD+ + ?
-
-
-
-
?
NADH + hexammineruthenium-(III)-chloride
NAD+ + ?
-
-
-
-
?
NADH + hexammineruthenium-(III)-chloride
NAD+ + ?
-
-
-
-
?
NADH + menadione

NAD+ + menadiol
-
menadione is a poor electron acceptor
-
?
NADH + menadione
NAD+ + menadiol
-
-
-
-
?
NADH + n-decylubiquinone + 5 H+[side1]

NAD+ + n-decylubiquinol + 4H+[side2]
Q9UUU0
-
-
-
?
NADH + n-decylubiquinone + 5 H+[side1]
NAD+ + n-decylubiquinol + 4H+[side2]
Q9UUU0
-
-
-
?
NADH + n-decylubiquinone + H+

NAD+ + n-decylubiquinol
-
-
-
-
?
NADH + n-decylubiquinone + H+
NAD+ + n-decylubiquinol
-
-
-
-
?
NADH + O2

NAD+ + superoxide radical
-
addition of NADH, but not decylubiquinol, leads to superoxide production
-
-
?
NADH + O2
NAD+ + superoxide radical
-
-
-
?
NADH + O2
NAD+ + superoxide radical
-
-
-
-
?
NADH + oxidized 2,6-dichlorophenolindophenol + H+

NAD+ + reduced 2,6-dichlorophenolindophenol
-
41.7% of the activity with ubiquinone-1
-
-
?
NADH + oxidized 2,6-dichlorophenolindophenol + H+
NAD+ + reduced 2,6-dichlorophenolindophenol
-
-
-
-
?
NADH + oxidized 2,6-dichlorophenolindophenol + H+
NAD+ + reduced 2,6-dichlorophenolindophenol
-
-
-
-
?
NADH + oxidized 2,6-dichlorophenolindophenol + H+
NAD+ + reduced 2,6-dichlorophenolindophenol
-
2,6-dichlorophenolindophenol is a poor electron acceptor
-
?
NADH + oxidized 2,6-dichlorophenolindophenol + H+
NAD+ + reduced 2,6-dichlorophenolindophenol
-
-
-
-
?
NADH + oxidized 2,6-dichlorophenolindophenol + H+
NAD+ + reduced 2,6-dichlorophenolindophenol
-
-
-
-
?
NADH + oxidized 2,6-dichlorophenolindophenol + H+
NAD+ + reduced 2,6-dichlorophenolindophenol
-
2,6-dichlorophenol indophenol as electron acceptor
-
-
?
NADH + oxidized 2,6-dichlorophenolindophenol + H+
NAD+ + reduced 2,6-dichlorophenolindophenol
-
-
-
-
-
NADH + oxidized 2,6-dichlorophenolindophenol + H+
NAD+ + reduced 2,6-dichlorophenolindophenol
-
-
-
-
?
NADH + plastoquinone

NAD+ + plastoquinol
-
-
-
-
?
NADH + plastoquinone
NAD+ + plastoquinol
-
-
-
-
?
NADH + ubiquinone

?
-
enzyme is involved in respiratory chain
-
-
?
NADH + ubiquinone
?
-
NADH-ubiquinone reductase complex I is involved in the respiratory chain
-
-
?
NADH + ubiquinone
?
-
proton-translocating enzyme
-
-
?
NADH + ubiquinone
?
-
vectorial electron translocation is coupled to electron transfer
-
-
-
NADH + ubiquinone
?
-
-
-
-
?
NADH + ubiquinone
?
-
mutations in NADH:ubiquinone oxidoreductase NADH of Escherichia coli affect growth on mixed amino acids, because the large NADH/NAD+ ratio inhibits enzymes, e.g. citrate synthase and malate dehydrogenase, shared by the tricarboxylic acid cycle and the glyoxylate shunt
-
-
?
NADH + ubiquinone
?
-
-
-
-
-
NADH + ubiquinone
?
-
proton-translocating enzyme
-
-
?
NADH + ubiquinone
?
-
the enzyme catalyzes the transfer of electrons without translocation of protons across the membrane
-
-
-
NADH + ubiquinone
?
-
proton-translocating enzyme
-
-
?
NADH + ubiquinone
?
-
proton-translocating enzyme
-
-
?
NADH + ubiquinone
?
-
proton-translocating NADH-ubiquinone oxidoreductase is the largest multiprotein complex of the respiratory chain
-
-
?
NADH + ubiquinone

NAD+ + ubiquinol
-
-
-
-
?
NADH + ubiquinone
NAD+ + ubiquinol
-
-
-
-
?
NADH + ubiquinone
NAD+ + ubiquinol
-
-
-
-
?
NADH + ubiquinone
NAD+ + ubiquinol
-
-
-
-
?
NADH + ubiquinone
NAD+ + ubiquinol
-
-
-
-
?
NADH + ubiquinone
NAD+ + ubiquinol
-
-
-
-
?
NADH + ubiquinone
NAD+ + ubiquinol
-
-
-
-
?
NADH + ubiquinone
NAD+ + ubiquinol
-
-
-
-
?
NADH + ubiquinone
NAD+ + ubiquinol
-
-
391082, 392676, 392677, 392684, 392691, 392699, 392703, 392717, 392718, 392721, 671827, 671993, 672129, 672176, 672291, 672348, 672597, 675345, 676868 -
-
?
NADH + ubiquinone
NAD+ + ubiquinol
-
proton-translocating enzyme
-
-
?
NADH + ubiquinone
NAD+ + ubiquinol
-
-
-
-
?
NADH + ubiquinone
NAD+ + ubiquinol
-
-
-
-
?
NADH + ubiquinone
NAD+ + ubiquinol
-
-
-
-
?
NADH + ubiquinone
NAD+ + ubiquinol
-
-
-
-
?
NADH + ubiquinone
NAD+ + ubiquinol
-
-
-
-
?
NADH + ubiquinone
NAD+ + ubiquinol
-
-
-
-
?
NADH + ubiquinone
NAD+ + ubiquinol
-
-
-
-
?
NADH + ubiquinone
NAD+ + ubiquinol
-
-
392678, 392681, 392682, 392692, 392718, 671940, 672008, 672041, 673620, 673940, 674624, 675494 -
-
?
NADH + ubiquinone
NAD+ + ubiquinol
-
-
-
-
?
NADH + ubiquinone
NAD+ + ubiquinol
-
-
-
-
?
NADH + ubiquinone
NAD+ + ubiquinol
-
-
-
-
?
NADH + ubiquinone
NAD+ + ubiquinol
-
-
-
-
?
NADH + ubiquinone
NAD+ + ubiquinol
-
-
-
-
?
NADH + ubiquinone
NAD+ + ubiquinol
-
-
-
-
?
NADH + ubiquinone
NAD+ + ubiquinol
-
-
-
-
?
NADH + ubiquinone
NAD+ + ubiquinol
-
-
-
-
?
NADH + ubiquinone
NAD+ + ubiquinol
-
-
-
-
?
NADH + ubiquinone
NAD+ + ubiquinol
-
-
-
-
?
NADH + ubiquinone
NAD+ + ubiquinol
-
-
-
-
?
NADH + ubiquinone
NAD+ + ubiquinol
-
proton-translocating enzyme
-
-
?
NADH + ubiquinone
NAD+ + ubiquinol
-
-
-
-
?
NADH + ubiquinone
NAD+ + ubiquinol
-
-
-
-
?
NADH + ubiquinone
NAD+ + ubiquinol
-
-
-
-
?
NADH + ubiquinone
NAD+ + ubiquinol
-
-
-
-
?
NADH + ubiquinone
NAD+ + ubiquinol
-
-
-
-
?
NADH + ubiquinone
NAD+ + ubiquinol
-
-
-
-
?
NADH + ubiquinone
NAD+ + ubiquinol
-
-
-
-
?
NADH + ubiquinone
NAD+ + ubiquinol
-
-
-
-
?
NADH + ubiquinone
NAD+ + ubiquinol
-
proton-translocating enzyme
-
-
?
NADH + ubiquinone
NAD+ + ubiquinol
-
proton-translocating enzyme
-
-
?
NADH + ubiquinone
NAD+ + ubiquinol
-
-
-
-
?
NADH + ubiquinone
NAD+ + ubiquinol
-
-
-
-
?
NADH + ubiquinone
NAD+ + ubiquinol
-
-
-
-
?
NADH + ubiquinone
NAD+ + ubiquinol
-
-
-
-
?
NADH + ubiquinone + 6 H+[side 1]

NAD+ + ubiquinol + 7 H+[side 2]
-
-
-
-
?
NADH + ubiquinone + 6 H+[side 1]
NAD+ + ubiquinol + 7 H+[side 2]
-
-
-
-
?
NADH + ubiquinone + 6 H+[side 1]
NAD+ + ubiquinol + 7 H+[side 2]
-
-
-
-
?
NADH + ubiquinone + 6 H+[side 1]
NAD+ + ubiquinol + 7 H+[side 2]
-
-
-
-
?
NADH + ubiquinone + 6 H+[side 1]
NAD+ + ubiquinol + 7 H+[side 2]
-
-
-
-
?
NADH + ubiquinone + 6 H+[side 1]
NAD+ + ubiquinol + 7 H+[side 2]
-
-
-
-
?
NADH + ubiquinone + 6 H+[side 1]
NAD+ + ubiquinol + 7 H+[side 2]
-
electron transfer path from FMN to ubiquinone through the FeS cluster chain. Upon the oxidation of one NADH molecule 4H+ are translocated across the membrane from N-side (cytoplasm, equivalent to the mitochondrial matrix) to P-side (periplasm, equivalent to the mitochondrial intermembrane space)
-
-
?
NADH + ubiquinone + 6 H+[side 1]
NAD+ + ubiquinol + 7 H+[side 2]
-
-
-
-
?
NADH + ubiquinone-0

NAD+ + ubiquinol-0
-
-
-
-
?
NADH + ubiquinone-0
NAD+ + ubiquinol-0
-
-
-
-
?
NADH + ubiquinone-0
NAD+ + ubiquinol-0
-
-
-
-
?
NADH + ubiquinone-1

NAD+ + ubiquinol-1
-
-
-
-
?
NADH + ubiquinone-1
NAD+ + ubiquinol-1
-
-
-
-
?
NADH + ubiquinone-1
NAD+ + ubiquinol-1
-
-
-
-
?
NADH + ubiquinone-1
NAD+ + ubiquinol-1
-
reaction is catalyzed by the enzymatically active subcomplexes Ilambda, IS, and IlamdaS at similar rates to complex I
-
-
?
NADH + ubiquinone-1
NAD+ + ubiquinol-1
-
-
-
-
?
NADH + ubiquinone-1
NAD+ + ubiquinol-1
-
-
-
?
NADH + ubiquinone-1
NAD+ + ubiquinol-1
-
-
-
-
?
NADH + ubiquinone-1
NAD+ + ubiquinol-1
-
-
-
?
NADH + ubiquinone-1
NAD+ + ubiquinol-1
-
-
-
-
?
NADH + ubiquinone-1
NAD+ + ubiquinol-1
-
-
-
-
?
NADH + ubiquinone-1
NAD+ + ubiquinol-1
-
-
-
-
?
NADH + ubiquinone-1
NAD+ + ubiquinol-1
-
-
-
-
?
NADH + ubiquinone-1
NAD+ + ubiquinol-1
-
-
-
-
?
NADH + ubiquinone-1
NAD+ + ubiquinol-1
-
-
-
-
?
NADH + ubiquinone-1 + 5 H+[side 1]

NAD+ + ubiquinol-1 + 4 H+[side 2]
-
-
-
-
?
NADH + ubiquinone-1 + 5 H+[side 1]
NAD+ + ubiquinol-1 + 4 H+[side 2]
-
-
-
-
?
NADH + ubiquinone-1 + 5 H+[side 1]
NAD+ + ubiquinol-1 + 4 H+[side 2]
-
-
-
?
NADH + ubiquinone-10

NAD+ + ubiquinol-10
-
-
-
-
?
NADH + ubiquinone-10
NAD+ + ubiquinol-10
-
-
-
-
?
NADH + ubiquinone-2

NAD+ + reduced ubiquinol-2
-
-
-
-
?
NADH + ubiquinone-2
NAD+ + reduced ubiquinol-2
-
-
-
-
?
NADH + ubiquinone-2
NAD+ + reduced ubiquinol-2
-
-
-
-
?
NADH + ubiquinone-2
NAD+ + reduced ubiquinol-2
-
-
-
-
?
NADH + ubiquinone-2
NAD+ + reduced ubiquinol-2
-
-
-
-
?
NADH + ubiquinone-2

NAD+ + ubiquinol-2
-
-
-
-
?
NADH + ubiquinone-2
NAD+ + ubiquinol-2
-
-
-
-
?
NADH + ubiquinone-2
NAD+ + ubiquinol-2
-
-
-
-
?
NADH + ubiquinone-2
NAD+ + ubiquinol-2
-
-
-
-
?
NADH + ubiquinone-2
NAD+ + ubiquinol-2
-
-
-
-
?
NADH + ubiquinone-6

NAD+ + ubiquinol-6
-
86% of the activity with ubiquinone-1
-
-
?
NADH + ubiquinone-6
NAD+ + ubiquinol-6
-
-
-
-
?
NADH + ubiquinone-8

NAD+ + ubiquinol-8
-
-
-
-
?
NADH + ubiquinone-8
NAD+ + ubiquinol-8
-
-
-
-
?
NADPH + H+ + ubiquinone

NADP+ + ubiquinol
-
the enzyme has a lower affinity to NADPH than to NADH
-
-
?
NADPH + H+ + ubiquinone
NADP+ + ubiquinol
-
the enzyme has a lower affinity to NADPH than to NADH
-
-
?
NADPH + H+ + ubiquinone
NADP+ + ubiquinol
-
-
-
-
?
ubiquinone-1 + NADH + H+

ubiquinol-1 + NAD+
-
the protein shows NADH-ubiquinone-1 oxidoreductase activity, NADPH oxidase (EC 1.6.3.1) and NADPH-ubiquinone-1 oxidoreductase (EC 1.6.5.2) activities
-
-
?
ubiquinone-1 + NADH + H+
ubiquinol-1 + NAD+
-
-
-
-
?
additional information

?
-
-
no transhydrogenase activity with NADPH
-
-
-
additional information
?
-
-
NADH-NADP transhydrogenation at a very slow rate
-
-
-
additional information
?
-
-
complex I also shows NADH oxidase activity
-
-
-
additional information
?
-
-
no redox-coupled Na+ transport, but the deactive form of complex I, which is formed spontaneously when enzyme turnover is precluded by lack of substrates, is a Na+/H+ antiporter. The antiporter activity is Na+-specific and is abolished upon reactivation by the addition of substrates and by the complex I inhibitor rotenone. It is specific for Na+ over K+
-
-
-
additional information
?
-
-
the enzyme shows also rotenone-insensitive NADH:hexaammineruthenium III (HAR) oxidoreductase activity
-
-
-
additional information
?
-
-
the positively-charged electron acceptors paraquat and hexaammineruthenium(III) react with the nucleotide-bound reduced flavin in complex I, by an unusual ternary mechanism, overview. The mechanism for paraquat reduction defines another mechanism for superoxide production by complex I by redox cycling
-
-
-
additional information
?
-
-
no activity with coenzyme Q10
-
-
-
additional information
?
-
-
complex I is a primary electrogenic proton pump and may be capable of secondary sodium antiport. The magnitude of the pH-gradient depends on the sodium concentration
-
-
-
additional information
?
-
-
FMN-dependent NADH-quinone reductase induced by menadione
-
-
-
additional information
?
-
-
midpoint potentials for the redox transitions of the quinone radicals in complex I are -37 and -235 mV at pH 6 with an absorption around 325 nm and a fluorescence emission at 460/475 nm
-
-
-
additional information
?
-
-
NADH:ubiquinone oxidoreductase (EC 1.6.5.3) constitutes the entry point of electrons in the electron transport chain. Mitochondrial NADH:ubiquinone oxidoreductase or complex I (CI) is a frequently affected enzyme in cases of mitochondrial disorders
-
-
-
additional information
?
-
-
computational model of mammalian complex I for catalysis. The fully reduced FMN and semiquinone are the primary sources of superoxide, and the iron-sulfur cluster N2 produces none. The FMN radical only produces reactive oxygen species when the quinone reductase site is blocked. Reaxtive oxygen species generation is maximized during reverse electron transport with both the FMN and semiquinone producing similar amounts of superoxide. The model successfully predicts the increase in reactive oxygen species generation when the membrane potential is high and matrix pH is alkaline
-
-
-
additional information
?
-
-
the enzyme mediates electron transfer to particulate methane monooxygenase
-
-
-
additional information
?
-
-
does not react with NADPH or oxygen
-
-
-
additional information
?
-
-
enzyme catalyzes the transfer electrons from NADH to quinone substrates by a nonclassical, two-site pingpong kinetic mechanism whereby substrate quinones bind to a site that is distinct from the NADH-binding site. Presence of two binding sites for quinone ligands, one favoring the reduced form and the other favoring the oxidized form
-
-
-
additional information
?
-
-
the enzyme shows also rotenone-insensitive NADH:hexaammineruthenium III (HAR) oxidoreductase activity. The enzyme NDH-1 catalyzes a number of the NADH:artificial electron acceptor oxidoreductase activities showing particularly high turnover numbers with ferricyanide and hexaammineruthenium(III), kinetic patterns of the steady-state NADH oxidation with these two electron acceptors, overview
-
-
-
additional information
?
-
-
no activity with coenzyme Q4 and coenzyme QD
-
-
-
additional information
?
-
-
superoxide production from complex I is large under conditions of reverse electron transport. Production of superoxide by complex I during reverse electron transport is at least 3fold more sensitive to the pH gradient than to the membrane potential
-
-
-
additional information
?
-
-
superoxide production rates by complex I during reverse electron transfer are much greater than during forwards electron transfer. The major site of superoxide production in complex I is the quinpone-binding site, it is most likely a semiquinone
-
-
-
additional information
?
-
-
hexaammineruthenium (III) chloride, i.e. HAR, can act as artificial electron acceptor. The rate of NADH oxidation by the artificial electron acceptor HAR is about 10fold higher than NADH oxidase activity and is insensitive to rotenone and piericidin
-
-
-
additional information
?
-
-
no redox-coupled Na+ transport and no Na+/H+ antiporter function by the enzyme from Yarrowia lipolytica
-
-
-
additional information
?
-
-
the enzyme shows also rotenone-insensitive NADH:hexaammineruthenium III (HAR) oxidoreductase activity
-
-
-
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
(1R)-1-[(2R,2'R,5R,5'R)-5'-[(1R)-1-hydroxy-5-propyloctyl]octahydro-2,2'-bifuran-5-yl]-5-propylnonan-1-ol
-
IC50: 870 nM
(1R)-1-[(2R,2'R,5R,5'R)-5'-[(1R)-1-hydroxyethyl]octahydro-2,2'-bifuran-5-yl]undecan-1-ol
-
IC50: 280 nM
(1R)-1-[(2R,2'R,5R,5'R)-5'-[(1R)-1-hydroxyheptyl]octahydro-2,2'-bifuran-5-yl]pentadecan-1-ol
-
IC50: 34 nM
(1R)-1-[(2R,2'R,5R,5'R)-5'-[(1R)-1-hydroxyheptyl]octahydro-2,2'-bifuran-5-yl]undecan-1-ol
-
IC50: 3.2 nM
(1R)-1-[(2R,2'R,5R,5'R)-5'-[(1R)-1-hydroxynonyl]octahydro-2,2'-bifuran-5-yl]tridecan-1-ol
-
IC50: 7.5 nM
(1R)-1-[(2R,2'R,5R,5'R)-5'-[(1R)-1-hydroxypropyl]octahydro-2,2'-bifuran-5-yl]undecan-1-ol
-
IC50: 45 nM
(1R)-1-[(2R,2'R,5R,5'R)-5'-[(1R)-1-hydroxyundec-3-yn-1-yl]octahydro-2,2'-bifuran-5-yl]dodec-4-yn-1-ol
-
-
(1R)-1-[(2R,2'R,5R,5'R)-5'-[(1R)-1-hydroxyundecyl]octahydro-2,2'-bifuran-5-yl]dodecan-1-ol
-
-
(1R)-1-[(2R,2'R,5R,5'R)-5'-[(1R)-1-hydroxyundecyl]octahydro-2,2'-bifuran-5-yl]undeca-3,5,7,9-tetrayn-1-ol
-
IC50: 0.000172 mM
(1R)-1-[(2R,2'R,5R,5'R)-5'-[(1R)-5-ethyl-1-hydroxyoctyl]octahydro-2,2'-bifuran-5-yl]undecan-1-ol
-
IC50: 27 nM
(1R)-5-ethyl-1-[(2R,2'R,5R,5'R)-5'-[(1R)-1-hydroxy-5-propyloctyl]octahydro-2,2'-bifuran-5-yl]octan-1-ol
-
IC50: 1500 nM
(1R,1'R)-1,1'-((2R,2'R,5R,5'R)-octahydro-2,2'-bifuran-5,5'-diyl)-bis-(6-(4-n-butylphenoxy)hex-3-yn-1-ol)
-
-
(1R,1'R)-1,1'-((2R,2'R,5R,5'R)-octahydro-2,2'-bifuran-5,5'-diyl)-bis-(6-(4-n-butylphenoxy)hexan-1-ol)
-
-
(1R,1'R)-1,1'-(2R,2'R,5R,5'R)-octahydro-2,2'-bifuran-5,5'-diylbis(5-[4-[(E)-(4-butylphenyl)diazenyl]phenoxy]pentan-1-ol)
-
48 nM, 70% inhibition
(1R,1'R)-1,1'-(2R,2'R,5R,5'R)-octahydro-2,2'-bifuran-5,5'-diylbis(5-[4-[(Z)-(4-butylphenyl)diazenyl]phenoxy]pentan-1-ol)
-
48 nM, 70% inhibition
(1R,1'R)-1,1'-(2R,2'R,5R,5'R)-octahydro-2,2'-bifuran-5,5'-diylbis[6-(2-butylphenoxy)hexan-1-ol]
-
IC50: 1000 nM
(1R,1'R)-1,1'-(2R,2'R,5R,5'R)-octahydro-2,2'-bifuran-5,5'-diylbis[6-(4-butylphenoxy)hexan-1-ol]
-
IC50: 0.83 nM
(1R,1'R)-1,1'-(2R,2'R,5R,5'R)-octahydro-2,2'-bifuran-5,5'-diyldihexan-1-ol
-
IC50: 4500 nM
(1R,1'R)-1,1'-(2R,2'R,5R,5'R)-octahydro-2,2'-bifuran-5,5'-diyldioctan-1-ol
-
IC50: 45 nM
(1R,1'R)-1,1'-(2R,2'R,5R,5'R)-octahydro-2,2'-bifuran-5,5'-diyldiundecan-1-ol
(1R,1'S)-1,1'-(2R,5R)-tetrahydrofuran-2,5-diylditridecan-1-ol
(5S)-3-[(10R)-10-hydroxy-10-[(2R,2'R,5R,5'R)-5'-[(1R)-1 hydroxyundecyl]octahydro-2,2'-bifuran-5-yl]decyl]-5-methylfuran-2(5H)-one
-
IC50: 0.0000012 mM
(5S)-3-[(13R)-13-hydroxy-13-[(2R,2'R,5R,5'R)-5'-[(1R)-1-hydroxyundecyl]octahydro-2,2'-bifuran-5-yl]tridec-8-yn-1-yl]-5-methylfuran-2(5H)-one
-
; IC50: 0.00000083 mM
(5S)-3-[(13R)-13-hydroxy-13-[(2R,2'R,5R,5'R)-5'-[(1R)-1-hydroxyundecyl]octahydro-2,2'-bifuran-5-yl]trideca-4,6,8,10-tetrayn-1-yl]-5-methylfuran-2(5H)-one
-
IC50: 0.0000017 mM
(5S)-3-[(13R)-13-hydroxy-13-[(2R,2'R,5R,5'R)-5'-[(1S)-1-hydroxyundecyl]octahydro-2,2'-bifuran-5-yl]tridec-10-yn-1-yl]-5-methylfuran-2(5H)-one
-
IC50: 0.000001 mM
(5S)-3-[(13R)-13-hydroxy-13-[(2R,2'R,5R,5'R)-5'-[(1S)-1-hydroxyundecyl]octahydro-2,2'-bifuran-5-yl]tridec-4-yn-1-yl]-5-methylfuran-2(5H)-one
-
IC50: 0.00000085 mM
(5S)-3-[(13R)-13-hydroxy-13-[(2R,5R)-5-[(1S)-1-hydroxytridecyl]tetrahydrofuran-2-yl]trideca-4,6,8,10-tetrayn-1-yl]-5-methylfuran-2(5H)-one
-
IC50: 0.00028 mM
(5S)-3-[(13R)-13-hydroxy-13-[(2R,5R)-5-[(1S)-1-hydroxytridecyl]tetrahydrofuran-2-yl]tridecyl]-5-methylfuran-2(5H)-one
-
IC50: 0.0000023 mM
(5S)-3-[(13S)-13-hydroxy-13-[(2R,5R)-5-[(1S)-1-hydroxytriecyl]tetrahydrofuran-2-yl]tridecyl]-5-methylfuran-2(5H)-one
-
IC50: 0.0000051 mM
(5S)-3-[(16R)-16-hydroxy-16-[(2R,2'R,5R,5'R)-5'-[(1R)-1-hydroxyundecyl]octahydro-2,2'-bifuran-5-yl]hexadecyl]-5-methylfuran-2(5H)-one
-
IC50: 0.000013 mM
(5S)-3-[(19R)-19-hydroxy-19-[(2R,2'R,5R,5'R)-5'-[(1R)-1-hydroxyundecyl]octahydro-2,2'-bifuran-5-yl]nonadecyl]-5-methylfuran-2(5H)-one
-
IC50: 0.000271 mM
(5S)-3-[(2E,13R)-13-hydroxy-13-[(2R,2'R,5R,5'R)-5'-[(1R)-1-hydroxyundecyl]octahydro-2,2'-bifuran-5-yl]tridec-2-en-4-yn-1-yl]-5-methylfuran-2(5H)-one
-
IC50: 0.0000011 mM
(5S)-3-[(5R)-5-hydroxy-5-[(2R,2'R,5R,5'R)-5'-[(1R)-1-hydroxyundecyl]octahydro-2,2'-bifuran-5-yl]pentyl]-5-methylfuran-2(5H)-one
-
IC50: 0.000014 mM
(5S)-3-[(7E,13S)-13-hydroxy-13-[(2R,5R)-5-[(1S)-1-hydroxytridecyl]tetrahydrofuran-2-yl]tridec-7-en-9-yn-1-yl]-5-methylfuran-2(5H)-one
-
IC50: 0.0000052 mM
(5S)-3-[(8E,13R)-13-hydroxy-13-[(2R,2'R,5R,5'R)-5'-[(1S)-1-hydroxyundecyl]octahydro-2,2'-bifuran-5-yl]tridec-8-en-10-yn-1-yl]-5-methylfuran-2(5H)-one
-
IC50: 0.00000092 mM
(5S)-3-[(8R)-8-hydroxy-8-[(2R,2'R,5R,5'R)-5'-[(1R)-1-hydroxyundecyl]octahydro-2,2'-bifuran-5-yl]octyl]-5-methylfuran-2(5H)-one
-
IC50: 0.0000016 mM
(5S)-3-[4-[(E)-(4-[[(4R)-4-hydroxy-4-[(2R,5R)-5-[(1R)-1-hydroxytridecyl]tetrahydrofuran-2-yl]butyl]oxy]phenyl)diazenyl]benzyl]-5-methylfuran-2(5H)-one
-
-
(5S)-3-[4-[(E)-(4-[[(7R)-7-hydroxy-7-[(2R,5R)-5-[(1R)-1-hydroxytridecyl]tetrahydrofuran-2-yl]heptyl]oxy]phenyl)diazenyl]benzyl]-5-methylfuran-2(5H)-one
-
-
(5S)-3-[4-[(Z)-(4-[[(4R)-4-hydroxy-4-[(2R,5R)-5-[(1R)-1-hydroxytridecyl]tetrahydrofuran-2-yl]butyl]oxy]phenyl)diazenyl]benzyl]-5-methylfuran-2(5H)-one
-
-
(5S)-3-[4-[(Z)-(4-[[(7R)-7-hydroxy-7-[(2R,5R)-5-[(1R)-1-hydroxytridecyl]tetrahydrofuran-2-yl]heptyl]oxy]phenyl)diazenyl]benzyl]-5-methylfuran-2(5H)-one
-
-
1-Geranyl-2-methylbenzimidazole
-
0.001 mM, 87% inhibition
1-hydroxy-2-octyl-4(1H)quinolone
-
-
1-methyl-4-phenylpyridinium
-
complex I inhibitor, which has no effect on mediobasal hypothalamic tuberoinfundibular dopamine neurons, but significantly increases the percentage of apoptag immunoreactive neurons in midbrain primary nigrostriatal dopamine and mesolimbic dopamine cultures
1-methyl-4-phenylpyridinium ion
-
inhibition of mitochondrial complex I. Neuroprotective effects of caffeine in the MPP+ model of apoptosis are mediated through activation of the ataxia telangiectasia mutated enzyme/p53 pathway. Caffeine decreases the expression of cyclin D and the transcription factor E2F-1, a regulator of apoptosis in neurons. Caffeine-mediated neuroprotection is not mediated through blockade of adenosine receptors because DPCPX and CGS-15943, two antagonists of these receptors, fail to attenuate apoptosis produced by 1-methyl-4-phenylpyridinium ion treatment
2',3'-dideoxycytidine
-
0.001 mM prevents the phosphorylation of the NDUFB11 subunit of complex I
2,3-dimethoxy-5-methyl-6-[(6-methylimidazo[2,1-b][1,3]thiazol-5-yl)methyl]benzo-1,4-quinone
-
0.00028 mM, NADH-coenzyme Q1 activity
2,6-dichlorophenolindophenol
-
-
2-(4-butylbenzylamino)-3-methylchromen-4-one
-
-
2-(4-butylbenzyloxy)-3-methylchromen-4-one
-
-
2-decyl-4-quinazolinyl amine
2-n-decyl-4-quinazolinylamine
-
0.001 mM, 73% inhibition
2-n-decyl-quinazolin-4-yl-amine
Q9UUU0
transport is completely sensitive to 2-n-decyl-quinazolin-4-yl-amine
2-n-decyl-quinazoline-4-yl-amine
-
IC50: 0.0004 mM
2-n-heptyl-4-hydroxyquinoline-N-oxide
;
2-[(2,6-dimethylimidazo[2,1-b][1,3]thiazol-5-yl)methyl]-5,6-dimethoxy-3-methylbenzo-1,4-quinone
-
0.00077 mM, NADH-coenzyme Q1 activity
2-[(4-butylbenzyl)sulfanyl]-3-methyl-4H-chromen-4-one
-
-
2-[(6-chloro-2,3-dihydroimidazo[2,1-b][1,3]thiazol-5-yl)methyl]-5,6-dimethoxy-3-methylbenzo-1,4-quinone
-
0.00065 mM, NADH-coenzyme Q1 activity
2-[(6-chloro-2-methylimidazo[2,1-b][1,3]thiazol-5-yl)methyl]-5,6-dimethoxy-3-methylbenzo-1,4-quinone
-
0.00025 mM, NADH-coenzyme Q1 activity
2-[(6-chloroimidazo[2,1-b][1,3]thiazol-5-yl)methyl]-5,6-dimethoxy-3-methylbenzo-1,4-quinone
-
0.00096 mM, NADH-coenzyme Q1 activity
2-[4-(4-fluorobutyl)benzylamino]-3-methylchromen-4-one
-
-
2-[4-(4-fluorobutyl)benzyloxy]-3-methylchromen-4-one
-
-
2-[4-(4-fluorobutyl)benzylsulfanyl]-3-methylchromen-4-one
-
most potent inhibitor. 30 min after high uptake of the radiotracer from the blood pool into the myocardium, kidney, and liver. After 2 h about 66% of the activity in the myocardium at 30 min has been retained, whereas ca. 70% has been cleared from the liver and kidney
3'-azido-3'-deoxythymidine
-
0.01 and 0.05 mM prevent the phosphorylation of the NDUFB11 subunit of complex I. This is associated with a decrease in complex I activity
3'-azido-3'-deoxythymidine monophosphate
-
0.15 mM prevents the phosphorylation of the NDUFB11 subunit of complex I. This is associated with a decrease in complex I activity
3,3'-methylene-bis(4-hydroxycoumarin)
-
-
37-methoxyquinoxalinone
-
IC50: 10 nM
39-pyridopyrazinone
-
IC50: 17 nM
4-(4-benzyl-phenoxy)-N-(3,4-dimethoxy-benzyl)-benzamide
-
-
4-(4-tert-butyl-phenoxy)-N-(3,4-dimethoxy-benzyl)-benzamide
5-(N-ethyl)-N-isopropylamiloride
-
IC50 : 0.1 mM
5-(N-ethyl-N-isopropyl)-amiloride
-
0.015 mM, up to 40% decrease in the proton pumping activity of the wild-type and subunit NuoL mutants D303A, D400A, D400E, no significant change in mutant D178N
5-(N-ethyl-N-isopropyl)amiloride
5-fluoro-3-methyl-2-(4-(4-(trifluoromethoxy)benzyl)-phenyl)quinolin-4(1H)-one
inhibitor exhibits potency against both drug-resistant strains in vitro and parasite-infected mice in vivo via a potential allosteric mechanism. Inhibitor can be used in combination with dihydroartemisinin synergistically
5BM-GX
-
inhibits transhydrogenation reaction with NADH and 3'-acetyl pyridine adenine dinucleotide
6-amino-4-(4-tert-butylphenethylamino)quinazoline
6-azido-4-(4-iodophenethylamino)quinazoline
6-azido-N-[2-(4-tert-butylphenyl)ethyl]-6,7-dihydroquinazolin-4-amine
-
9-amino-6-chloro-2-methoxyacridine
-
0.0005 mM
AMP
-
dead-end inhibitor, linear competitive inhibitor of NADH, linear uncompetitive inhibitor of oxidized 2,6-dichlorophenol indophenol
AMS-GX
-
inhibits transhydrogenation reaction with NADH and 3'-acetyl pyridine adenine dinucleotide
Amytal
-
0.5 mM, 50% inhibition
arylazido-beta-alanyl-NAD+
-
competitive inhibition towards NADH and ferricyanide
atovaquone
-
20 nM, complete inhibition of partially purified enzyme. Inhibition of complex I represents a likely mechanism of the known antileishmanial activity of the drug
benzimidazole
-
0.001 mM, 72% inhibition
benzo (1,2,3) thiadiazole-7-carbothioic acid S-methyl ester
-
0.075 mM, strong inhibition
benzoxazinone
-
0.001 mM, 76% inhibition
bis-tetrahydrofuran acetogenin
-
the additional methylenes enhance the hydrophobicity of the spacer region, which may be thermodynamically advantageous for bringing the polar gamma-lactone ring into the membrane-embedded segment of complex I
-
carbonyl-cyanide-p-trifluoro-methoxy-phenylhydrazone
-
0.001 mM
carvedilol
-
decreases mitochondrial complex I activity, which is associated with an increase in mitochondrial H2O2 production, total glutathione and protein thiols content
Cd2+
-
1 mM, potent inhibitor
dicyclohexylcarbodi-imide
-
90% inhibition, IC50: 0.25 mM
Dicyclohexylcarbodiimide
-
-
diphenyl iodonium
-
maximal inhibition after preincubation with NADH, more complete inhibition with the more hydrophobic electron acceptors such as ubiquinone-1 or ubiquinone-2 as electron acceptor compared to the more hydrophilic ones, such as ubiquinone-0 or dichloroindophenol
diphenyl iodonium chloride
-
0.001 mM and above
diphenyleineiodonium
-
does not inhibit superoxide generation
diphenylene iodinium chloride
-
-
diphenylene iodonium
-
75% inhibition, IC50: 0.013 mM
diphenylene iodonium chloride
-
0.001 mM and above
diphenyleneiodonium
-
strongly inhibits superoxide production by complex I driven by reverse electron transport from succinate. Inhibition of superoxide production is not dependent on changes in the pH gradient. The inhibitor does not react with the flavin of complex I
DL-homocysteic acid
-
marked (ca. 64%) decrease of respiratory chain complex I activity in the cerebral cortex of immature rats following seizures induced by bilateral intracerebroventricular infusion of DL-homocysteic acid (600 nanomol/side). Decrease is already evident during the acute phase of seizures (60-90 min after infusion) and persists for at least 20 h after the seizures. Inhibition is selective for complex I since activities of complex II and IV and citrate synthase remain unaffected. Inhibition of complex I activity is not associated with changes in complex I content. Enhanced production of reactive oxygen species by inhibited complex I in mitochondria from DL-homocysteic acid-treated animals. Competitive NMDA receptor antagonist AP7, a selective and potent group II mGluR agonist (2R,4R)-APDC and a highly selective group III mGluR, subtype 8, agonist (S)-3,4-DCPG, significantly reduce the extent of complex I inhibition. The superoxide dismutase mimetic Tempol and a selective peroxynitrite scavenger and decomposition catalyst FeTPPS provide a significant attenuation of complex I inhibition associated with DL-homocysteic acid-induced seizures
dodecyl-beta-D-maltoside
-
leads to immediate loss of activity
doxorubicin
-
; maximal inhibition at 0.001 mM
ferricyanide
-
inhibits the interaction of the oxidized enzyme with NADH
flutamide
-
inhibits complex I of the electron transport chain to a greater extent than a nitro to cyano analogue of flutamide. As compared to the nitro to cyano analogue of flutamide, the nitroaromatic group of flutamide enhances cytotoxicity to hepatocytes, likely through mechanisms involving mitochondrial dysfunction and ATP depletion that include complex I inhibition
imidazole
-
0.001 mM, 75% inhibition
liponox DCH
-
inhibitory at concentrations higher than 0.02%
Mersalyl
-
0.3 mM, 77% inhibition of NADH-ubiquinone-1 reductase activity, 96% inhibition of NADH-potassium ferricyanide reductase activity
Mg2+
-
inhibition of the enzyme in its inactive form, in its active form the enzyme complex is not sensitive
N,N'-dicyclohexylcarbodiimide
-
2 mM, 71% inhibition
N-(3,4-dimethoxy-benzyl)-4-[4-(1,1-dimethyl-propyl)-phenoxy]-benzamide
-
-
NEM
-
inhibition of the enzyme in its inactive form, in its active form the enzyme complex is not sensitive
Ni2+
-
1 mM, potent inhibitor
oxygen
-
O2 induces self-inactivation of the enzyme via the formation of protein radicals
p-chloromercuriphenyl sulfonic acid
-
0.1 mM, 50% inhibition
palmitate
-
IC50: 0.009 mM, at 25°C and pH 8.0
quinoxalinone
-
0.001 mM, 79% inhibition
reduced 2,6-dichlorophenolindophenol
-
-
reduced coenzyme Q1
-
product inhibition
Rhein
-
i.e. 4,5-dioxy-anthraquinone-z-carbonic acid, competes for a NADH-binding site
salicylic acid
-
0.5 mM, 45% inhibition
squamocin M
-
IC50: 0.00000085 mM
squamocin-quinoxalinone
-
-
Trifluoperazine
-
0.05 mM
vanillylnonanamide
-
0.4 mM
[2-(4-butyl)benzylsulfanyl]-3-methylchromen-4-one
-
-
(1R,1'R)-1,1'-(2R,2'R,5R,5'R)-octahydro-2,2'-bifuran-5,5'-diyldiundecan-1-ol

-
IC50: 0.0000016 mM
(1R,1'R)-1,1'-(2R,2'R,5R,5'R)-octahydro-2,2'-bifuran-5,5'-diyldiundecan-1-ol
-
IC50: 1.6 nM
(1R,1'S)-1,1'-(2R,5R)-tetrahydrofuran-2,5-diylditridecan-1-ol

-
IC50: 0.025 mM
(1R,1'S)-1,1'-(2R,5R)-tetrahydrofuran-2,5-diylditridecan-1-ol
-
IC50: 9.0 nM
2-decyl-4-quinazolinyl amine

-
the compound is both a complex I inhibitor and an uncoupler
2-decyl-4-quinazolinyl amine
-
-
2-decyl-4-quinazolinyl amine
-
0.00022 mM
2-decyl-4-quinazolinyl amine
-
0.002 mM, strong inhibitor
3-azido-ubiquinone-2

-
4-(4-tert-butyl-phenoxy)-N-(3,4-dimethoxy-benzyl)-benzamide

-
-
4-(4-tert-butyl-phenoxy)-N-(3,4-dimethoxy-benzyl)-benzamide
-
-
5-(N-ethyl-N-isopropyl)amiloride

-
-
5-(N-ethyl-N-isopropyl)amiloride
Q9UUU0
inhibits of complex I and increases the membrane conductivity
6-amino-4-(4-tert-butylphenethylamino)quinazoline

-
6-amino-4-(4-tert-butylphenethylamino)quinazoline
-
-
6-azido-4-(4-iodophenethylamino)quinazoline

the compound specifically binds to the 49000 Da and ND1 subunits with a frequency of about 4:1
6-azido-4-(4-iodophenethylamino)quinazoline
-
the compound specifically binds to the 49000 Da and ND1 subunits with a frequency of about 4:1
ADP-ribose

-
competitive with NADH
ADP-ribose
-
ADP-ribose acts as mixed-type inhibitors for NADH, ferricyanide and 5,8-dioxy-1,4-naphthoquinone
ADP-ribose
-
competitive with NADH
benzamil
