Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
H+ + NADH + reduced ferredoxin = H2 + NAD+ + oxidized ferredoxin
-
NADH + 3 H+ + 2 reduced ferredoxin = NAD+ + 2 oxidized ferredoxin + 2 H2
-
NADH + H+ + reduced ferredoxin = H2 + NAD+ + oxidized ferredoxin
-
2 H+ + reduced ferredoxin = H2 + oxidized ferredoxin
-
H+ + reduced ferredoxin = H2 + oxidized ferredoxin
-
reduced ferredoxin = H2 + oxidized ferredoxin
-
cholesterol + reduced adrenodoxin + O2 = 24-hydroxycholesterol + oxidized adrenodoxin + H2O
-
3 2-methylpentane + 3 reduced ferreredoxin + O2 = 2-methyl-pentan-2-ol + 2-methyl-pentan-3-ol + 2-methyl-pentan-4-ol + 3 oxidized ferredoxin
-
(+)-camphor + reduced ferredoxin + O2 = (+)-exo-5-hydroxycamphor + oxidized ferredoxin + H2O
-
adamantane + reduced ferreredoxin + O2 = 1-adamantol + 2-adamantol + oxidized ferredoxin + H2O
-
cyclooctane + reduced ferreredoxin + O2 = cyclooctanol + cyclooctanone + oxidized ferredoxin + H2O
-
hexane + reduced ferreredoxin + O2 = hexan-2-ol + hexan-3-ol + oxidized ferredoxin + H2O
-
1-deoxypentalenic acid + reduced ferredoxin + O2 = pentalenic acid + oxidized ferredoxin + H2O
-
compactin + reduced ferredoxin + O2 = pravastatin + oxidized ferredoxin + H2O
-
diclofenac + reduced ferredoxin + O2 = 4'-hydroxydiclofenac + oxidized ferredoxin + H2O
-
1-phenylimidazole + reduced ferredoxin + O2 = ? + oxidized ferredoxin + H2O
-
2,5-di-tert-butylhydroquinone + reduced ferredoxin + O2 = ? + oxidized ferredoxin + H2O
-
2,5-di-tert-butylquinone + reduced ferredoxin + O2 = ? + oxidized ferredoxin + H2O
-
2-phenylimidazole + reduced ferredoxin + O2 = ? + oxidized ferredoxin + H2O
-
4-phenylimidazole + reduced ferredoxin + O2 = ? + oxidized ferredoxin + H2O
-
cyclo(L-alanyl-L-alanyl) + reduced ferredoxin + O2 = ? + oxidized ferredoxin + H2O
-
cyclo(L-leucyl-L-leucyl) + reduced ferredoxin + O2 = pulcherriminic acid + oxidized ferredoxin + H2O
-
cyclo(L-leucyl-L-phenylalanyl) + reduced ferredoxin + O2 = ? + oxidized ferredoxin + H2O
-
cyclo(L-leucyl-L-prolyl) + reduced ferredoxin + O2 = ? + oxidized ferredoxin + H2O
-
cyclo(L-leucyl-L-tryptophanyl) + reduced ferredoxin + O2 = ? + oxidized ferredoxin + H2O
-
cyclo(L-methionyl-L-methionyl) + reduced ferredoxin + O2 = ? + oxidized ferredoxin + H2O
-
cyclo(L-valyl-L-valyl) + reduced ferredoxin + O2 = ? + oxidized ferredoxin + H2O
-
(25R)-5beta-cholestane-3alpha,7alpha,12alpha,27-tetraol + reduced adrenodoxin + O2 = 3alpha,7alpha,12alpha-trihydroxy-5beta-cholestanoic acid + oxidized adrenodoxin + H2O
-
1alpha-hydroxyvitamin D3 + reduced adrenodoxin + O2 = 1alpha,25-dihydroxyvitamin D3 + oxidized adrenodoxin + H2O
-
3alpha,7alpha,12alpha-trihydroxy-5beta-cholestan-27-al + reduced adrenodoxin + O2 = 3alpha,7alpha,12alpha-trihydroxy-5beta-cholestanoic acid + oxidized adrenodoxin + H2O
-
5-cholestene-3beta,7alpha-diol + reduced adrenodoxin + O2 = 5-cholestene-3alpha,7alpha,26-triol + oxidized adrenodoxin + H2O
-
5beta-cholestane-3alpha,7alpha,12alpha,26-tetraol + reduced adrenodoxin + O2 = 3alpha,7alpha,12alpha-trihydroxy-5beta-cholestan-26-al + oxidized adrenodoxin + H2O
-
5beta-cholestane-3alpha,7alpha,12alpha,27-tetraol + reduced adrenodoxin + O2 = 3alpha,7alpha,12alpha-trihydroxy-5beta-cholestane-27-oic acid + oxidized adrenodoxin + H2O
-
5beta-cholestane-3alpha,7alpha,12alpha-triol + reduced adrenodoxin + H+ + O2 = (25R)-5beta-cholestane-3alpha,7alpha,12alpha,26-tetraol + oxidized adrenodoxin + H2O
-
5beta-cholestane-3alpha,7alpha,12alpha-triol + reduced adrenodoxin + O2 = (25R)-5beta-cholestane-3alpha,7alpha,12alpha,26-tetraol + oxidized adrenodoxin + H2O
-
5beta-cholestane-3alpha,7alpha,12alpha-triol + reduced adrenodoxin + O2 = (25R)-5beta-cholestane-3alpha,7alpha,12alpha,27-tetraol + oxidized adrenodoxin + H2O
-
5beta-cholestane-3alpha,7alpha,12alpha-triol + reduced adrenodoxin + O2 = 5beta-cholestane-3alpha,7alpha,12alpha,26-tetraol + oxidized adrenodoxin + H2O
-
5beta-cholestane-3alpha,7alpha,12alpha-triol + reduced adrenodoxin + O2 = 5beta-cholestane-3alpha,7alpha,12alpha,27-tetrol + oxidized adrenodoxin + H2O
-
5beta-cholestane-3alpha,7alpha-diol + reduced adrenodoxin + O2 = 5beta-cholestane-3alpha,7alpha,26-triol + oxidized adrenodoxin + H2O
-
7alpha-hydroxy-4-cholesten-3-one + reduced adrenodoxin + O2 = 7alpha,26-dihydroxy-4-cholesten-3-one + oxidized adrenodoxin + H2O
-
beta-sitosterol + reduced adrenodoxin + O2 = 26-hydroxy-beta-sitosterol + 29-hydroxy-beta-sitosterol + oxidized adrenodoxin + H2O
-
cholesterol + reduced adrenodoxin + H+ + O2 = 26-hydroxycholesterol + oxidized adrenodoxin + H2O
-
cholesterol + reduced adrenodoxin + O2 = 24-hydroxycholesterol + oxidized adrenodoxin + H2O
-
cholesterol + reduced adrenodoxin + O2 = 25-hydroxycholesterol + oxidized adrenodoxin + H2O
-
cholesterol + reduced adrenodoxin + O2 = 26-hydroxycholesterol + oxidized adrenodoxin + H2O
-
cholesterol + reduced adrenodoxin + O2 = 27-hydroxycholesterol + oxidized adrenodoxin + H2O
-
ergosterol + reduced adrenodoxin + O2 = 24-hydroxyergosterol + 26-hydroxyergosterol + 28-hydroxyergosterol + oxidized adrenodoxin + H2O
-
24,25-dihydroxycholecalciferol + reduced adrenodoxin + O2 = 1alpha,24,25-trihydroxycholecalciferol + oxidized adrenodoxin + H2O
-
11-deoxycorticosterone + reduced adrenal ferredoxin + 2 H+ + 2 O2 = aldosterone + oxidized adrenal ferredoxin + 2 H2O
-
11-deoxycorticosterone + reduced adrenal ferredoxin + O2 = corticosterone + oxidized adrenal ferredoxin + H2O
285392, 285410, 285391, 285407, 285393, 285394, 285402, 285404, 285401, 285406, 285389, 285390
-
11-deoxycortisol + reduced adrenal ferredoxin + O2 = 14alpha-hydroxy-11-deoxycortisol + oxidized adrenal ferredoxin + H2O
-
11-deoxycortisol + reduced adrenal ferredoxin + O2 = cortisol + oxidized adrenal ferredoxin + H2O
-
17alpha,21-dihydroxy-pregn-4-ene-3,20-dione + reduced adrenal ferredoxin + O2 = 11beta,17alpha,21-trihydroxy-pregn-4-ene-3,20-dione + oxidized adrenal ferredoxin + H2O
-
17alpha,21-dihydroxy-pregn-4-ene-3,20-dione + reduced adrenal ferredoxin + O2 = 14alpha,17alpha,21-trihydroxy-pregn-4-ene-3,20-dione + oxidized adrenal ferredoxin + H2O
-
18-hydroxy-corticosterone + reduced adrenal ferredoxin + O2 = aldosterone + oxidized adrenal ferredoxin + H2O
-
18-hydroxycorticosterone + reduced adrenal ferredoxin + O2 = aldosterone + oxidized adrenal ferredoxin + H2O
-
19-hydroxy-11-deoxycorticosterone + reduced adrenal ferredoxin + O2 = 19-oxo-11-deoxycorticosterone + oxidized adrenal ferredoxin + H2O
-
4-androstene-3,17-dione + reduced adrenal ferredoxin + O2 = 11beta-hydroxy-4-androstene-3,17-dione + oxidized adrenal ferredoxin + H2O
-
4-androstene-3,17-dione + reduced adrenal ferredoxin + O2 = 19-hydroxy-4-androstene-3,17-dione + oxidized adrenal ferredoxin + H2O
-
4-pregnen-21-ol-3,20-dione + reduced adrenal ferredoxin + O2 = 4-pregnene-11,21-diol-3,20-dione + oxidized adrenal ferredoxin + H2O
-
4-pregnene-17,21-diol-3,20-dione + reduced adrenal ferredoxin + O2 = 4-pregnene-11,17,21-triol-3,20-dione + oxidized adrenal ferredoxin + H2O
-
corticosterone + reduced adrenal ferredoxin + O2 = 18-hydroxy-11-deoxycorticosterone + oxidized adrenal ferredoxin + ?
-
corticosterone + reduced adrenal ferredoxin + O2 = 18-hydroxy-corticosterone + oxidized adrenal ferredoxin + H2O
-
corticosterone + reduced adrenal ferredoxin + O2 = 18-hydroxycorticosterone + oxidized adrenal ferredoxin + H2O
-
corticosterone + reduced adrenal ferredoxin + O2 = aldosterone + oxidized adrenal ferredoxin + H2O
-
cortisol + reduced adrenal ferredoxin + O2 = cortisone + oxidized adrenal ferredoxin + ?
-
testosterone + reduced adrenal ferredoxin + O2 = 11beta-hydroxytestosterone + oxidized adrenal ferredoxin + H2O
-
11-deoxycorticosterone + reduced adrenodoxin + O2 = corticosterone + oxidized adrenodoxin + H2O
-
11-deoxycortisol + reduced adrenodoxin + O2 = cortisol + oxidized adrenodoxin + H2O
-
18-hydroxycorticosterone + reduced adrenodoxin + O2 = aldosterone + oxidized adrenodoxin + H2O
-
a steroid + reduced adrenodoxin + O2 = an 11beta-hydroxysteroid + oxidized adrenodoxin + H2O
-
androstendione + reduced adrenodoxin + O2 = ? + oxidized adrenodoxin + H2O
-
corticosterone + reduced adrenodoxin + O2 = 18-hydroxycorticosterone + oxidized adrenodoxin + H2O
-
progesterone + reduced adrenodoxin + O2 = 11beta-hydroxyprogesterone + oxidized adrenodoxin + H2O
-
testosterone + reduced adrenodoxin + O2 = 11-hydroxytestosterone + oxidized adrenodoxin + H2O
-
corticosterone + reduced adrenal ferredoxin + O2 = 18-hydroxycorticosterone + oxidized adrenal ferredoxin + H2O
-
cholesterol + reduced adrenal ferredoxin + O2 = pregnenolone + 4-methylpentanal + oxidized adrenal ferredoxin
-
17,20-dihydroxyvitamin D2 + reduced adrenodoxin + O2 = 17,20,24-trihydroxyvitamin D2 + oxidized adrenodoxin + O2
-
20,23-dihydroxyvitamin D3 + reduced adrenodoxin + O2 = 17,20,23-trihydroxyvitamin D3 + oxidized adrenodoxin + H2O
-
20,23-dihydroxyvitamin D3 + reduced adrenodoxin + O2 = 17alpha,20,23-trihydroxyvitamin D3 + oxidized adrenodoxin + H2O
-
20-hydroxyvitamin D2 + reduced adrenodoxin + O2 = 17,20,24-trihydroxyvitamin D2 + oxidized adrenodoxin + O2
-
20-hydroxyvitamin D3 + reduced adrenodoxin + O2 = 20,23-dihydroxyvitamin D3 + 17alpha,20,23-trihydroxyvitamin D3 + oxidized adrenodoxin + H2O
-
20-hydroxyvitamin D3 + reduced adrenodoxin + O2 = 20,23-dihydroxyvitamin D3 + oxidized adrenodoxin + H2O
-
20alpha, 22(R)-dihydroxycholesterol + reduced adrenodoxin + O2 = ? + oxidized adrenodoxin + H2O
-
20alpha-hydroxycholesterol + reduced adrenodoxin + O2 = pregnenolone + 4-methylpentanal + oxidized adrenodoxin + H2O
-
22(R)-hydroxycholesterol + reduced adrenodoxin + O2 = ? + oxidized adrenodoxin + H2O
-
22(R)-hydroxycholesterol + reduced adrenodoxin + O2 = pregnenolone + oxidized adrenodoxin + H2O
-
25-hydroxycholesterol + reduced adrenodoxin + O2 = pregnenolone + oxidized adrenodoxin + H2O
-
cholesterol + reduced adrenodoxin + O2 + H+ = pregnenolone + 4-methylpentanal + oxidized adrenodoxin + H2O
-
cholesterol + reduced adrenodoxin + O2 = ? + oxidized adrenodoxin + H2O
-
cholesterol + reduced adrenodoxin + O2 = pregnenolone + 4-methylpentanal + oxidized adrenodoxin + H2O
0, 285412, 285413, 285414, 285415, 285419, 285420, 285423, 285424, 285426, 285427, 285428, 285429, 285430, 285431, 285432, 285433, 285422, 285421, 285425, 285416, 285418, 285417
-
cholesterol sulfate + reduced adrenodoxin + O2 = pregnenolone sulfate + 17-hydroxy-pregnenolone + dehydroisoandrosterone sulfate + oxidized adrenodoxin + H2O
-
vitamin D2 + reduced adrenodoxin + O2 = 17,20,24-trihydroxyvitamin D2 + oxidized adrenodoxin + H2O
-
vitamin D3 + reduced adrenodoxin + O2 = 20-hydroxyvitamin D3 + oxidized adrenodoxin + H2O
-
cholesterol + reduced ferredoxin + O2 = pregnenolone + 4-methylpentanal + oxidized ferredoxin
-
choline + O2 + 2 reduced ferredoxin + 2 H+ = betaine aldehyde hydrate + H2O + 2 oxidized ferredoxin
-
choline + O2 + reduced ferredoxin + H+ = betaine aldehyde hydrate + H2O + oxidized ferredoxin
-
choline + O2 + reduced ferredoxin = betaine aldehyde hydrate + H2O + oxidized ferredoxin
-
choline + O2 + reduced ferredoxin = betaine aldehyde hydrate + oxidized ferredoxin
-
11-deoxycorticosterone + reduced adrenodoxin + O2 = 15beta-hydroxy-11-deoxycorticosterone + 7beta,15beta-dihydroxy-11-deoxycorticosterone + oxidized adrenodoxin + H2O
-
11-deoxycorticosterone + reduced adrenodoxin + O2 = 15beta-hydroxy-11-deoxycorticosterone + oxidized adrenodoxin + H2O
-
11-deoxycortisol + reduced adrenodoxin + O2 = 15beta-15,17,21-trihydroxypregn-4-ene-3,20-dione + oxidized adrenodoxin + H2O
-
11-deoxycortisol + reduced adrenodoxin + O2 = 15beta-hydroxy-11-deoxycortisol + oxidized adrenodoxin + H2O
-
11beta-hydroxy-4-androstene-3,17-dione + reduced adrenodoxin + O2 = ? + oxidized adrenodoxin + H2O
-
17alpha-methyltestosterone + reduced adrenodoxin + O2 = ? + oxidized adrenodoxin + H2O
-
19-nortestosterone + reduced adrenodoxin + O2 = ? + oxidized adrenodoxin + H2O
-
4-androstene-3,17-dione + reduced adrenodoxin + O2 = 15beta-hydroxyandrostene-3,17-dione + oxidized adrenodoxin + H2O
-
abietic acid + reduced adrenodoxin + O2 = 12-hydroxyabietic acid + oxidized adrenodoxin + H2O
-
abietic acid + reduced adrenodoxin + O2 = ? + oxidized adrenodoxin + H2O
-
corticosterone + reduced adrenodoxin + O2 = 15beta-hydroxycorticosterone + oxidized adrenodoxin + H2O
-
cortisone + reduced adrenodoxin + O2 = 15beta-hydroxycortisone + oxidized adrenodoxin + H2O
-
dehydroabietic acid + reduced adrenodoxin + O2 = ? + oxidized adrenodoxin + H2O
-
dehydroepiandrosterone + reduced adrenodoxin + O2 = 7beta-hydroxy-dehydroepiandrosterone + oxidized adrenodoxin + H2O
-
dexamethasone + reduced adrenodoxin + O2 = ? + oxidized adrenodoxin + H2O
-
digitoxigenin + reduced adrenodoxin + O2 = ? + oxidized adrenodoxin + H2O
-
imipramine + reduced adrenodoxin + O2 = desipramine + oxidized adrenodoxin + H2O
-
isopimaric acid + reduced adrenodoxin + O2 = ? + oxidized adrenodoxin + H2O
-
prednisolone + reduced adrenodoxin + O2 = ? + oxidized adrenodoxin + H2O
-
prednisone + reduced adrenodoxin + O2 = ? + oxidized adrenodoxin + H2O
-
pregnenolone + reduced adrenodoxin + O2 = 7beta-hydroxy-pregnenolone + oxidized adrenodoxin + H2O
-
progesterone + reduced adrenodoxin + O2 = 15beta-hydroxy-progesterone + 11alpha-hydroxy-progesterone + oxidized adrenodoxin + H2O
-
progesterone + reduced adrenodoxin + O2 = 15beta-hydroxy-progesterone + oxidized adrenodoxin + H2O
-
progesterone + reduced adrenodoxin + O2 = 15beta-hydroxyprogesterone + oxidized adrenodoxin + H2O
-
testosterone + reduced adrenodoxin + O2 = 15beta-hydroxytestosterone + oxidized adrenodoxin + H2O
-
11-deoxycorticosterone + reduced ferredoxin + O2 = 15beta-hydroxy-11-deoxycorticosterone + oxidized ferredoxin + H2O
-
4-androstene-3,17-dione + reduced ferredoxin + O2 = 15beta-hydroxyandrost-4-en-3,17-dione + oxidized ferredoxin + H2O
-
6alpha-fluoro-16alpha-methyl-deoxycorticosterone + reduced ferredoxin + O2 = 15beta-hydroxy-6alpha-fluoro-16alpha-methyl-deoxycorticosterone + oxidized ferredoxin + H2O
-
deoxycorticosterone + reduced ferredoxin + O2 = 15beta-hydroxy-11-deoxycorticosterone + oxidized ferredoxin + H2O
-
nandrolone + reduced ferredoxin + O2 = ? + oxidized ferredoxin + H2O
-
progesterone + reduced ferredoxin + O2 = 15beta-hydroxy-progesterone + oxidized ferredoxin + H2O
-
1,1'-dihydroxy-3,4-didehydrolycopene + 2 reduced ferredoxin + 2 O2 = 2,2'-dioxo-1,1'-dihydroxy-3,4-didehydrolycopene + 2 oxidized ferredoxin + 2 H2O
-
spirilloxanthin + 2 reduced ferredoxin + 2 O2 = 2,2'-dioxosprilloxanthin + 2 oxidized ferredoxin + 2 H2O
-
1'-hydroxy-1-demethylspheroidene + reduced ferredoxin + O2 = 1'-hydroxy-1-demethylspheroiden-2-one + oxidized ferredoxin + H2O
-
1'-hydroxyspheroidene + reduced ferredoxin + O2 = 1'-hydroxyspheroiden-2-one + oxidized ferredoxin + H2O
-
1-hydroxy-3,4-didehydrolycopene + reduced ferredoxin + O2 = 2-oxo-1-hydroxy-3,4-didehydrolycopene + oxidized ferredoxin + H2O
-
2-hydroxyspheroidene + reduced ferredoxin + O2 = spheroiden-2-one + oxidized ferredoxin + H2O
-
3,4,3',4'-tetradehydrolycopene + reduced ferredoxin + O2 = 1,1'-dihydroxy-3,4,3',4'-tetradehydrolycopen-2-one + oxidized ferredoxin + H2O
-
3,4,3',4'-tetradehydrolycopene + reduced ferredoxin + O2 = 1-hydroxy-3,4,3',4'-tetradehydrolycopen-2-one + oxidized ferredoxin + H2O
-
3,4-didehydrolycopene + reduced ferredoxin + O2 = 1-hydroxy-3,4-didehydrolycopen-2-one + oxidized ferredoxin + H2O
-
spheroidene + reduced ferredoxin + O2 = spheroiden-2-one + oxidized ferredoxin + H2O
-
spheroidene + reduced ferredoxin + O2 = spheroidenone + oxidized ferredoxin + H2O
-
spirilloxanthin + reduced ferredoxin + O2 = 2-oxospirilloxanthin + oxidized ferredoxin + H2O
-
heptadecanoyl-[acyl-carrier protein] + reduced ferredoxin + O2 = 9-heptadecenoyl-[acyl-carrier protein] + oxidized ferredoxin + H2O
-
hexadecanoyl-[acyl-carrier protein] + reduced ferredoxin + O2 + H+ = 9-hexadecenoyl-[acyl-carrier protein] + oxidized ferredoxin + H2O
-
nonadecanoyl-[acyl-carrier protein] + reduced ferredoxin + O2 = 9-nonadecenoyl-[acyl-carrier protein] + oxidized ferredoxin + H2O
-
octadecanoyl-[acyl-carrier protein] + reduced ferredoxin + O2 + H+ = 9-octadecenoyl-[acyl-carrier protein] + oxidized ferredoxin + H2O
-
pentadecanoyl-[acyl-carrier protein] + reduced ferredoxin + O2 = 9-pentadecenoyl-[acyl-carrier protein] + oxidized ferredoxin + H2O
-
stearoyl-[acyl-carrier protein] + ferredoxin + O2 = oleoyl-[acyl-carrier protein] + oxidized ferredoxin + H2O
-
stearoyl-[acyl-carrier protein] + reduced ferredoxin + O2 + H+ = oleoyl-[acyl-carrier protein] + oxidized ferredoxin + H2O
-
a (7Z,10Z)-hexadeca-7,10-dienoyl-[glycerolipid] + 2 reduced ferredoxin + O2 + 2 H+ = a (7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl-[glycerolipid] + 2 oxidized ferredoxin + 2 H2O
-
a linoleoyl-[glycerolipid] + 2 reduced ferredoxin + O2 + 2 H+ = an alpha-linolenoyl-[glycerolipid] + 2 oxidized ferredoxin + 2 H2O
-
a 1-gamma-linolenoyl 2-acyl-sn-glycerol 3-phosphate + 2 reduced ferredoxin + O2 + 2 H+ = a 1-stearidonoyl 2-acyl-sn-glycerol 3-phosphate + 2 oxidized ferredoxin + 2 H2O
-
a 1-linoleoyl 2-acyl-sn-glycerol 3-phosphate + 2 reduced ferredoxin + O2 + 2 H+ = a 1-alpha-linolenoyl 2-acyl-sn-glycerol 3-phosphate + 2 oxidized ferredoxin + 2 H2O
-
pentalenolactone F + O2 + 2 reduced ferredoxin + 2 H+ = pentalenolactone + 2 oxidized ferredoxin + 2 H2O
-
2-C-methyl-D-erythritol 2,4-cyclodiphosphate + 2 reduced ferredoxin = (E)-4-hydroxy-3-methylbut-2-en-1-yl diphosphate + H2O + 2 oxidized ferredoxin
-
7-hydroxymethyl-chlorophyll a + reduced ferredoxin + H+ = chlorophyll a + oxidized ferredoxin + H2O
-
7-hydroxymethylchlorophyll a + reduced ferredoxin + H+ = chlorophyll a + oxidized ferredoxin + H2O
-
71-hydroxychlorophyll a + reduced ferredoxin + H+ = chlorophyll a + oxidized ferredoxin + H2O
-
2 reduced ferredoxin + NAD+ = 2 oxidized ferredoxin + NADH + H+
-
2 reduced ferredoxin + NADP+ = 2 oxidized ferredoxin + NADPH + H+
-
reduced ferredoxin + NAD(P)+ = oxidized ferredoxin + NAD(P)H
-
reduced ferredoxin + NAD+ = oxidized ferredoxin + NADH
-
reduced ferredoxin + NAD+ = oxidized ferredoxin + NADH + H+
-
reduced ferredoxin + NADP+ + H+ = oxidized ferredoxin + NADPH
-
reduced ferredoxin + NADP+ = oxidized ferredoxin + NADPH
-
reduced ferredoxin + NADP+ = oxidized ferredoxin + NADPH + H+
-
reduced ferredoxin + NAD+ = oxidized ferredoxin + NADH + H+
-
reduced adrenodoxin + NADP = oxidized adrenodoxin + NADPH + H+
-
reduced adrenodoxin + NADP+ + H+ = oxidized adrenodoxin + NADPH
-
reduced ferredoxin + NAD(P)+ = oxidized ferredoxin + NAD(P)H
-
reduced ferredoxin + NADP+ = oxidized ferredoxin + NADPH
-
2 reduced ferredoxin + 2 H+ + acetylene + 2 ATP + 2 H2O = 2 oxidized ferredoxin + ethylene + 2 ADP + 2 phosphate
440145, 440142, 440176, 440177, 440146, 440157, 440174, 440186, 440154, 440158, 440178, 440181, 440182, 440183, 440187, 440188, 440169, 0, 440170, 440168, 440148, 440189
-
N2 + 4 reduced ferredoxin = hydrazine + 4 oxidized ferredoxin
-
nitrite + 4 reduced ferredoxin + 5 H+ = hydroxylamine + H2O + 4 oxidized ferredoxin
-
8 reduced ferredoxin + 8 H+ + N2 + 16 ATP + 16 H2O = 8 oxidized ferredoxin + H2 + 2 NH3 + 16 ADP + 16 phosphate
0, 440145, 440134, 440143, 440144, 440151, 440142, 440171, 440176, 440177, 440140, 440146, 440147, 440149, 440152, 440157, 440166, 440174, 440153, 440159, 440164, 440180, 440150, 440155, 440156, 440158, 440163, 440178, 440179, 440181, 440183, 440184, 440187, 440188, 440189, 440169, 440162, 440148, 440165, 440170, 440161, 440167, 440168, 440160, 440138, 440154, 440186, 440175, 440182
-
hydrazine + reduced ferredoxin = 2 NH3 + oxidized ferredoxin
-
hydroxylamine + reduced ferredoxin = NH3 + H2O + oxidized ferredoxin
-
nitrite + H+ + ATP + reduced ferredoxin = NH3 + 2 H2O + 12 ADP + 12 phosphate + oxidized ferredoxin
-
reduced ferredoxin + H+ + ATP = oxidized ferredoxin + H2 + ADP + phosphate
-
reduced ferredoxin + H+ + CH3NC + ATP = oxidized ferredoxin + CH4 + C2H4 + C3H6 + C3H8 + CH3NH2 + ADP + phosphate
-
reduced ferredoxin + H+ + CN- + ATP = oxidized ferredoxin + CH4 + NH3 + ADP + phosphate
-
reduced ferredoxin + H+ + N2 + ATP + H2O = oxidized ferredoxin + H2 + NH3 + ADP + phosphate
-
reduced ferredoxin + H+ + N2 + ATP = oxidized ferredoxin + H2 + NH3 + ADP + phosphate
-
reduced ferredoxin + H+ + N2O + ATP = oxidized ferredoxin + H2O + N2 + ADP + phosphate
-
reduced ferredoxin + H+ + N3- + ATP = oxidized ferredoxin + NH3 + N2 + ADP + phosphate
-
reduced ferredoxin + H+ + SCN- + ATP = oxidized ferredoxin + H2S + HCN + ADP + phosphate
-
12 reduced ferredoxin + 12 H+ + N2 + 40 ATP + 40 H2O = 12 oxidized ferredoxin + 3 H2 + 2 NH3 + 40 ADP + 40 phosphate
-
reduced ferredoxin + H+ + N2 + ATP = oxidized ferredoxin + H2 + NH3 + ADP + phosphate
-
acetyl-CoA + CO2 + 2 reduced ferredoxin + 2 H+ = pyruvate + CoA + 2 oxidized ferredoxin
-
acetyl-CoA + CO2 + 2 reduced ferredoxin + 2 H+ = pyruvate + CoA + 2 oxidized ferredoxin
-
CO2 + methanofuran + reduced ferredoxin = formylmethanofuran + H2O + oxidized ferredoxin
-
succinyl-CoA + CO2 + 2 reduced ferredoxin + 2 H+ = 2-oxoglutarate + CoA + 2 oxidized ferredoxin
-
succinyl-CoA + CO2 + 2 reduced ferredoxin + 2 H+ = 2-oxoglutarate + CoA + oxidized ferredoxin
-
succinyl-CoA + CO2 + reduced ferredoxin = 2-oxoglutarate + CoA + oxidized ferredoxin
-
CO2 + 2 reduced ferredoxin + 2 H+ = CO + H2O + 2 oxidized ferredoxin
-
acetate + H+ + reduced ferredoxin = acetaldehyde + H2O + oxidized ferredoxin
-
protochlorophyllide + reduced ferredoxin = chlorophyllide + oxidized ferredoxin
-
6-hydroxynicotinate + reduced ferredoxin = 1,4,5,6-tetrahydro-6-oxonicotinate + oxidized ferredoxin
-
6-hydroxynicotinate + reduced ferredoxin = 6-oxo-1,4,5,6-tetrahydronicotinate + oxidized ferredoxin
-
geranylgeraniol + reduced ferredoxin = 14,15-dihydrogeranylgeraniol + oxidized ferredoxin
-
15,16-dihydrobiliverdin + reduced ferredoxin = phycoerythrobilin + oxidized ferredoxin
-
biliverdin IXa + reduced ferredoxin = 15,16-dihydrobiliverdin + oxidized ferredoxin
-
biliverdin IXalpha + reduced ferredoxin = 15,16-dihydrobiliverdin + oxidized ferredoxin
-
15,16-dihydrobiliverdin + reduced ferredoxin = (3Z)-phycoerythrobilin + oxidized ferredoxin
-
biliverdin IXalpha + 2 reduced ferredoxin = (3Z)-phytochromobilin + 2 oxidized ferredoxin
-
biliverdin IXalpha + reduced ferredoxin = (3Z)-phytochromobilin + oxidized ferredoxin
-
biliverdin IXalpha + 4 reduced ferredoxin = (3Z)-phycocyanobilin + 4 oxidized ferredoxin
-
biliverdin IXa + reduced ferredoxin = (3Z)-phycocyanobilin + oxidized ferredoxin
-
biliverdin IXa diamide + reduced ferredoxin = ? + oxidized ferredoxin
-
biliverdin IXalpha + reduced ferredoxin = (3E)-phycocyanobilin + oxidized ferredoxin
-
biliverdin Ixalpha + reduced ferredoxin = (3Z)-phycocyanobilin + oxidized ferredoxin
-
biliverdin IXalpha + reduced ferredoxin = phycocyanobilin + oxidized ferredoxin
-
biliverdin IXalpha 12-monoamide + reduced ferredoxin = phycocyanobilin 12-monoamide + oxidized ferredoxin
-
biliverdin IXalpha 8-monoamide + reduced ferredoxin = phycocyanobilin 8-monoamide + oxidized ferredoxin
-
biliverdin XIII + reduced ferredoxin = phycocyanobilin + oxidized ferredoxin
-
biliverdin XIIIalpha + reduced ferredoxin = (3E)-isophytochromobilin + oxidized ferredoxin
-
biliverdin XIIIalpha + reduced ferredoxin = (3Z)-isophytochromobilin + oxidized ferredoxin
-
biliverdin XIIIalpha + reduced ferredoxin = ? + oxidized ferredoxin
-
biliverdin XIIIalpha monoamide + reduced ferredoxin = ? + oxidized ferredoxin
-
biliverdin IXalpha + 2 reduced ferredoxin = (3Z)-phycoerythrobilin + 2 oxidized ferredoxin
-
chlorophyllide a + reduced ferredoxin + 2 ATP + 2 H2O = protochlorophyllide + oxidized ferredoxin + 2 ADP + 2 phosphate + 2 H+
-
chlorophyllide a + reduced ferredoxin + ATP = protochlorophyllide + oxidized ferredoxin + ADP + phosphate
-
protochlorophyllide a + reduced ferredoxin + 2 ATP + 2 H2O = chlorophyllide a + oxidized ferredoxin + 2 ADP + 2 phosphate
-
protochlorophyllide a + reduced ferredoxin + 4 ATP + 4 H2O = chlorophyllide a + oxidized ferredoxin + 4 ADP + 4 phosphate
-
2-bromobenzoyl-CoA + reduced ferredoxin + 2 ATP + 2 H2O = 2-bromocyclohexa-1,5-diene-1-carbonyl-CoA + oxidized ferredoxin + 2 ADP + 2 phosphate
-
2-chlorobenzoyl-CoA + reduced ferredoxin + 2 ATP + 2 H2O = 2-chlorocyclohexa-1,5-diene-1-carbonyl-CoA + oxidized ferredoxin + 2 ADP + 2 phosphate
-
2-fluorobenzoyl-CoA + reduced ferredoxin + 2 ATP + 2 H2O = 2-fluorocyclohexa-1,5-diene-1-carbonyl-CoA + oxidized ferredoxin + 2 ADP + 2 phosphate
-
2-hydroxybenzoyl-CoA + reduced ferredoxin + 2 ATP + 2 H2O = 2-hydroxycyclohexa-1,5-diene-1-carbonyl-CoA + oxidized ferredoxin + 2 ADP + 2 phosphate
-
2-methylbenzoyl-CoA + reduced ferredoxin + 2 ATP + 2 H2O = 2-methylcyclohexa-1,5-diene-1-carbonyl-CoA + oxidized ferredoxin + 2 ADP + 2 phosphate
-
3-bromobenzoyl-CoA + reduced ferredoxin + 2 ATP + 2 H2O = 3-bromocyclohexa-1,5-diene-1-carbonyl-CoA + oxidized ferredoxin + 2 ADP + 2 phosphate
-
3-chlorobenzoyl-CoA + reduced ferredoxin + 2 ATP + 2 H2O = 3-chlorocyclohexa-1,5-diene-1-carbonyl-CoA + oxidized ferredoxin + 2 ADP + 2 phosphate
-
3-fluorobenzoyl-CoA + reduced ferredoxin + 2 ATP + 2 H2O = 3-fluorocyclohexa-1,5-diene-1-carbonyl-CoA + oxidized ferredoxin + 2 ADP + 2 phosphate
-
3-hydroxybenzoyl-CoA + reduced ferredoxin + 2 ATP + 2 H2O = 3-hydroxycyclohexa-1,5-diene-1-carbonyl-CoA + oxidized ferredoxin + 2 ADP + 2 phosphate
-
3-methylbenzoyl-CoA + reduced ferredoxin + 2 ATP + 2 H2O = 3-methylcyclohexa-1,5-diene-1-carbonyl-CoA + oxidized ferredoxin + 2 ADP + 2 phosphate
-
4-bromobenzoyl-CoA + reduced ferredoxin + 2 ATP + 2 H2O = 4-bromocyclohexa-1,5-diene-1-carbonyl-CoA + oxidized ferredoxin + 2 ADP + 2 phosphate
-
4-chlorobenzoyl-CoA + reduced ferredoxin + 2 ATP + 2 H2O = 4-chlorocyclohexa-1,5-diene-1-carbonyl-CoA + oxidized ferredoxin + 2 ADP + 2 phosphate
-
4-ethylbenzoyl-CoA + reduced ferredoxin + 2 ATP + 2 H2O = 4-ethylcyclohexa-1,5-diene-1-carbonyl-CoA + oxidized ferredoxin + 2 ADP + 2 phosphate
-
4-fluorobenzoyl-CoA + reduced ferredoxin + 2 ATP + 2 H2O = 4-fluorocyclohexa-1,5-diene-1-carbonyl-CoA + oxidized ferredoxin + 2 ADP + 2 phosphate
-
4-methylbenzoyl-CoA + reduced ferredoxin + 2 ATP + 2 H2O = 4-methylcyclohexa-1,5-diene-1-carbonyl-CoA + oxidized ferredoxin + 2 ADP + 2 phosphate
-
benzoyl-CoA + reduced ferredoxin + 2 ATP + 2 H2O = cyclohexa-1,5-diene-1-carbonyl-CoA + oxidized ferredoxin + 2 ADP + 2 phosphate
-
benzoyl-CoA + reduced ferredoxin + ATP + H2O = cyclohexa-1,5-diene-1-carboxyl-CoA + oxidized ferredoxin + ADP + phosphate
-
crotonyl-CoA + reduced ferredoxin = butanoyl-CoA + oxidized ferredoxin
-
reduced ferredoxin + NAD+ + H+ = oxidized ferredoxin + NADH
-
L-glutamine + 2-oxoglutarate + 2 reduced ferredoxin + 2 H+ = 2 L-glutamate + 2 oxidized ferredoxin
-
L-glutamine + 2-oxoglutarate + reduced ferredoxin + H+ = L-glutamate + oxidized ferredoxin
-
L-glutamine + 2-oxoglutarate + reduced ferredoxin + NADPH + H+ = L-glutamate + oxidized ferredoxin + NADP+
-
L-glutamine + 2-oxoglutarate + reduced ferredoxin = L-glutamate + oxidized ferredoxin
392022, 392001, 392004, 392019, 392026, 392002, 392006, 392013, 392020, 392021, 392017, 392007, 392008, 392014, 392012, 392003, 392005, 392011, 391450, 392018, 392028, 0, 392030, 392016, 392009, 392010
-
5,10-methylenetetrahydrofolate + reduced ferredoxin = 5-methyltetrahydrofolate + oxidized ferredoxin
-
oxidized coenzyme F420 + 2 reduced ferredoxin + 2 H+ = reduced coenzyme F420 + 2 oxidized ferredoxin
-
methanophenazine + reduced ferredoxin + 2 H+ = reduced methanophenazine + oxidized ferredoxin
-
oxidized coenzyme F420 + reduced ferredoxin = reduced coenzyme F420 + oxidized ferredoxin
-
nitrite + 6 reduced ferredoxin + 7 H+ = NH3 + 2 H2O + 6 oxidized ferredoxin
-
nitrite + 6 reduced ferredoxin = ammonia + 2 H2O + 6 oxidized ferredoxin
-
hydroxylamine + reduced ferredoxin = ammonia + H2O + oxidized ferredoxin
-
hydroxylamine + reduced ferredoxin = NH3 + H2O + oxidized ferredoxin
-
nitrite + reduced ferredoxin = ammonia + oxidized ferredoxin
-
nitrite + reduced ferredoxin = NH3 + H2O + oxidized ferredoxin
-
nitrate + 2 reduced ferredoxin + 2 H+ = nitrite + H2O + 2 oxidized ferredoxin
-
nitrate + reduced ferredoxin = nitrite + H2O + oxidized ferredoxin
440447, 440448, 208103, 0, 440455, 440456, 440443, 440444, 440446, 440450, 440453, 440454, 440451, 440452, 440445
-
nitrate + reduced ferredoxin = nitrite + oxidized ferredoxin
-
S-sulfoglutathione + 6 reduced ferredoxin + 6 H+ = glutathione persulfide + 6 oxidized ferredoxin + 3 H2O
-
sulfite + reduced ferredoxin + 6 H+ = sulfide + oxidized ferredoxin + 3 H2O
-
sulfite + reduced ferredoxin + H+ = hydrogen sulfide + oxidized ferredoxin + H2O
-
sulfite + reduced ferredoxin = hydrogen sulfide + oxidized ferredoxin + H2O
-
2 reduced ferredoxin + thioredoxin disulfide = 2 oxidized ferredoxin + thioredoxin + 2 H+
-
reduced ferredoxin + thioredoxin disulfide = 2 oxidized ferredoxin + thioredoxin + 2 H+
-
reduced ferredoxin + thioredoxin disulfide = oxidized ferredoxin + thioredoxin + H+
-
sulfite + a [DsrC protein]-dithiol + 2 reduced ferredoxin + 2 H+ = hydrogen sulfide + a [DsrC protein]-disulfide + 2 oxidized ferredoxin + 3 H2O
-
2 reduced ferredoxin + NAD+ + H+ + Na+in = 2 oxidized ferredoxin + NADH + Na+out
-
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Purification, characterization, and metabolic function of tungsten-containing aldehyde ferredoxin oxidoreductase from the hyperthermophilic and proteolytic archaeon Thermococcus strain ES-1
1995
Heider, J.; Ma, K.; Adams, M.W.W.
J. Bacteriol.
177
4757-4764
The novel tungsten-iron-sulfur protein of the hyperthermophilic archaebacterium, Pyrococcus furiosus, is an aldehyde ferredoxin oxidoreductase. Evidence for its participation in a unique glycolytic pathway
1991
Mukund, S.; Adams, M.W.W.
J. Biol. Chem.
266
14208-14216
-
The assimilatory nitrate-reducing system and its regulation
1981
Guerrero, M.G.; Vega, J.M.; Losada, M.
Annu. Rev. Plant Physiol.
32
169-204
Studies on the nature of steroid 11-beta hydroxylation
1957
Tomkins, G.M.; Michael, P.J.; Curran, J.F.
Biochim. Biophys. Acta
23
655-656
Hydroxylation of Reichstein's compound S with cell-free preparations from Curvularia lunata
1968
Zuidweg, M.H.J.
Biochim. Biophys. Acta
152
144-158
Purification and properties of cytochrome p-450 (11beta- and 18-hydroxylase) from bovine adrenocortical mitochondria
1977
Watanuki, M.; Tilley, B.E.; Hall, P.F.
Biochim. Biophys. Acta
483
236-247
Cytochrome P-450 for 11beta- and 18-hydroxylase activities of bovine adrenocortical mitochondria: one enzyme or two?
1978
Watanuki, M.; Tilley, B.E.; Hall, P.F.
Biochemistry
17
127-130
Properties of an adrenal cytochrome P-450 (P-45011beta) for the hydroxylations of corticosteroids
1978
Sato, H.; Ashida, N.; Suhara, K.; Itagaki, E.; Takemori, S.; Katagiri, M.
Arch. Biochem. Biophys.
190
307-314
Isolation of aldosterone synthase cytochrome P-450 from zona glomerulosa mitochondria of rat adrenal cortex
1989
Ogishima, T.; Mitani, F.; Ishimura, Y.
J. Biol. Chem.
264
10935-10938
Studies on the partially purified heme protein P-450 from the adrenal cortex
1973
Cooper, D.Y.; Schleyer, H.; Levin, S.S.; Rosenthal, O.
Ann. N. Y. Acad. Sci.
212
227-242
Integration of purified adrenocortical cytochrome P-45011beta into phospholipid vesicles
1982
Lombardo, A.; Defaye, G.; Guidicelli, C.; Monnier, N.; Chambaz, E.M.
Biochem. Biophys. Res. Commun.
104
1638-1645
The synthesis of aldosterone by the adrenal cortex. Two zones (fasciculata and glomerulosa) possess one enzyme for 11beta-, 18-hydroxylation, and aldehyde synthesis
1986
Yanigabashi, K.; Haniu, M.; Shively, J.E.; Shen, W.H.; Hall, P.
J. Biol. Chem.
261
3556-3562
Isolation of two distinct cytochromes P-45011beta with aldosterone synthase activity from bovine adrenocortical mitochondria
1989
Ogishima, T.; Mitani, F.; Ishimura, Y
J. Biochem.
105
497-499
Purification and characterization of two distinct forms of rat adrenal cytochrome P450(11) beta: functional and structural aspects
1989
Lauber, M.; Muller, J.
Arch. Biochem. Biophys.
274
109-119
Lipid regulation of bovine cytochrome P45011beta activity
1990
Seybert, D.
Arch. Biochem. Biophys.
279
188-194
Active site of bovine adrenocortical cytochrome P-45011beta studied by resonance Raman and electron paramagnetic resonance spectroscopies: distinction from cytochrome P-450scc
1990
Tsubaki, M.; Ichikawa, Y.; Fujimoto, Y.; Yu, N.T.; Hori, H.
Biochemistry
29
8805-8812
Ascorbate as a source of reducing equivalents for the synthesis of aldosterone
1990
Yanigabashi, K.; Kobayashi, Y.; Hall, P.F.
Biochem. Biophys. Res. Commun.
170
1256-1262
Functional and expression analysis of ovine steroid 11beta-hydroxylase (cytochrome P 45011beta)
1997
Boon, W.C.; Roche, P.J.; Butkus, A.; McDougall, J.G.; Jeyaseelan, K.; Coghlan, J.P.
Endocr. Res.
23
325-347
Inhibition of bovine cytochrome P-45011beta by 18-unsaturated progesterone derivatives
1995
Delorme, C.; Piffeteau, A.; Viger, A.; Marquet, A.
Eur. J. Biochem.
232
247-256
Mechanism-based inactivation of bovine cytochrome P-45011beta by 18-unsaturated progesterone derivatives
1997
Delorme, C.; Piffeteau, A.; Sobrio, F.; Marquet, A.
Eur. J. Biochem.
248
252-260
18-Vinyldeoxycorticosterone: a potent inhibitor of the bovine cytochrome P-45011beta
1998
Davioud, E.; Piffeteau, A.; Delorme, C.; Coustal, S.; Marquet, A.
Bioorg. Med. Chem.
6
1781-1788
Photoaffinity labeling of cytochrome P-45011beta with methyltrienolone as a probe for the substrate binding region
1993
Ohnishi, T.; Miura, S.; Ichikawa, Y.
Biochim. Biophys. Acta
1161
257-264
Stereoselective reductive metabolism of metyrapone and inhibitory activity of metyrapone metabolites, metyrapol enantiomers, on steroid 11beta-hydroxylase in the rat
1997
Nagamine, S.; Horisaka, E.; Fukuyama, Y.; Maetani, K.; Matsuzawa, R.; Iwakawa, S.; Asada, S.
Biol. Pharm. Bull.
20
188-192
Cloning and stable expression of the human mitochondrial cytochrome P45011B1 cDNA in V79 Chinese hamster cells and their application for testing of potential inhibitors
1995
Denner, K.; Vogel, R.; Schmalix, W.; Doehmer, J.; Bernhardt, R.
Pharmacogenetics
5
89-96
Purification and properties of cytochrome P-450 (P-450lun) catalyzing steroid 11beta-hydroxylation in Curvularia lunata
1993
Suzuki, K.; Sanga, K.i.; Chikaoka, Y.; Itagaki, E.
Biochim. Biophys. Acta
1203
215-223
Cloning and expression of the rat adrenal cytochrome P-450 11B3 (CYP11B3) enzyme cDNA: preferential 18-hydroxylation over 11beta-hydroxylation of DOC
1995
Zhou, M.Y.; Gomez-Sanchez, E.P.; Foecking, M.F.; Gomez-Sanchez, C.E.
Mol. Cell. Endocrinol.
114
137-145
Mitochondrial cytochrome P-450sec. Mechanism of electron transport by adrenodoxin
1980
Hanukoglu, I.; Jefcoate, C.R.
J. Biol. Chem.
255
3057-3061
Adrenal mitochondrial cytochrome P-450scc. Cholesterol and adrenodoxin interactions at equilibrium and during turnover
1981
Hanukoglu, I.; Spitsberg, V.; Bumpus, J.A.; Dus, K.M.; Jefcoate, C.R.
J. Biol. Chem.
256
4321-4328
Mechanisms of ionic activation of adrenal mitochondrial cytochromes P-450scc and P-45011beta
1981
Hanukoglu, I.; Privalle, C.T.; Jefcoate, C.R.
J. Biol. Chem.
256
4329-4335
Purification and characterization of adrenal cortex mitochondrial cytochrome P-450 specific for cholesterol side chain cleavage activity
1976
Wang, H.P.; Kimura, T.
J. Biol. Chem.
251
6068-6074
Binding of Triton X-100 to purified cytochrome P-450scc and enhancement of the cholesterol side chain cleavage activity
1979
Nakajin, S.; Ishii, Y.; Shinoda, M.
Biochem. Biophys. Res. Commun.
87
524-531
The catalytic cycle of cytochrome P-450scc and intermediates in the conversion of cholesterol to pregnenolone
1984
Hume, R.; Kelly, R.W.; Taylor, P.L.; Boyd, G.S.
Eur. J. Biochem.
140
583-591
Cytochrome P-450 from bovine adrenocortical mitochondria: an enzyme for the side chain cleavage of cholesterol. I. Purification and properties
1973
Shikita, M.; Hall, P.F.
J. Biol. Chem.
248
5598-5604
Purification of cytochrome P-450 from bovine adrenocortical mitochondria by an aniline-Sepharose and the properties
1975
Takemori, S.; Sukara, K.; Hashimoto, K.; Hashimoto, M.; Sato, H.; Gomi, T.; Katagiri, M.
Biochem. Biophys. Res. Commun.
63
588-593
Cholesterol metabolism by purified cytochrome P-450scc is highly stimulated by octyl glucoside and stearic acid exclusively in large unilamellar phospholipid vesicles
1989
Dhariwal, M.S.; Jefcoate, C.R.
Biochemistry
28
8397-8402
Cytochrome P-450scc-adrenodoxin interactions. Ionic effects on binding, and regulation of cytochrome reduction by bound steroid substrates
1985
Lambeth, J.D.; Kriengsiri, S.
J. Biol. Chem.
260
8810-8816
Competitive inhibition of cytochrome P-450scc by (22R)- and (22S)-22-aminocholesterol. Side-chain stereochemical requirements for C-22 amine coordination to the active-site heme
1985
Nagahisa, A.; Foo, T.; Gut, M.; Orme-Johnson, W.H.
J. Biol. Chem.
260
846-851
Purification and characterization of mitochondrial cytochrome P-450 associated with cholesterol side chain cleavage from bovine corpus luteum
1980
Kashiwagi, K.; Dafeldecker, W.P.; Salhanick, H.A.
J. Biol. Chem.
255
2606-2611
Active site-directed inhibitors of cytochrome P-450scc. Structural and mechanistic implications of a side chain-substituted series of amino-steroids
1983
Sheets, J.J.; Vickery, L.E.
J. Biol. Chem.
258
11446-11452
C-22-Substituted steroid derivatives as substrate analogues and inhibitors of cytochrome P-450scc
1983
Sheets, J.J.; Vickery, L.E.
J. Biol. Chem.
258
1720-1725
Modulation of the kinetics of cholesterol side-chain cleavage by an activator and by an inhibitor isolated from the cytosol of the cortex of bovine adrenals
1983
Warne, P.A.; Greenfield, N.J.; Lieberman, S.
Proc. Natl. Acad. Sci. USA
80
1877-1881
Cytochrome P-450 from bovine adrenocortical mitochondria: an enzyme for the side chain cleavage of cholesterol. II. Subunit structure
1973
Shikita, M.; Hall, P.F.
J. Biol. Chem.
248
5605-5609
Cytochrome P-450scc-mediated oxidation of (20S)-22-thiacholesterol: Characterization of mechanism-based inhibition
1995
Miao, E.; Joardar, S.; Zuo, C.; Cloutier, N.J.; Nagahisa, A.; Byon, C.; Wilson, S.R.; Orme-Johnson, W.H.
Biochemistry
34
8415-8421
alpha-Branched 1,2-diacyl phosphatidylcholines as effectors of activity of cytochrome P450SCC (CYP11A1). Modeling the structure of the fatty acyl chain region of cardiolipin
1996
Schwarz, D.; Kisselev, P.; Wessel, R.; Jueptner, O.; Schmid, R.D.
J. Biol. Chem.
271
12840-12846
Site-directed mutagenesis of cytochrome P450scc (CYP11A1). Effect of lysine residue substitution on its structural and functional properties
2000
Lepesheva, G.I.; Azeva, T.N.; Strushkevich, N.V.; Gilep, A.A.; Usanov, S.A.
Biochemistry (Moscow)
65
1409-1418
The use of the novel substrate-heme complex approach in the derivation of a representation of the active site of the enzyme cholesterol side chain cleavage
2000
Ahmed, S.
Biochem. Biophys. Res. Commun.
274
821-824
Substrate-binding region of cytochrome P-450scc (P-450 XIA1). Identification and primary structure of the cholesterol binding region in cytochrome P-450scc
1993
Tsujita, M.; Ichikawa, Y.
Biochim. Biophys. Acta
1161
124-130
Probing the interaction of bovine cytochrome P450scc (CYP11A1) with adrenodoxin: evaluating site-directed mutations by molecular modeling
2002
Usanov, S.A.; Graham, S.E.; Lepesheva, G.I.; Azeva, T.N.; Strushkevich, N.V.; Gilep, A.A.; Estabrook, R.W.; Peterson, J.
Biochemistry
41
8310-8320
Crystallization of ferredoxin-TPN reductase and its role in the photosynthetic apparatus of chloroplasts
1963
Shin, M.; Tagawa, K.; Arnon, D.I.
J. Biochem.
338
84-96
Crystallization and comparative characterization of reduced nicotinamide adenine dinucleotide phosphate-ferredoxin reductase from sheep adrenocortical mitochondria
1990
Yamazaki, M.; Ichikawa, Y.
Comp. Biochem. Physiol. B
96
93-100
Properties of crystalline reduced nicotinamide adenine dinucleotide phosphate-adrenodoxin reductase from bovine adrenocortical mitochondria. I. Physicochemical properties of holo- and apo-NADPH-adrenodoxin reductase and interaction between non-heme iron proteins and the reductase
1976
Hiwatashi, A.; Ichikawa, Y.; Maruya, N.; Yamano, T.; Aki, K.
Biochemistry
15
3082-3090
Crystallization and properties of reduced nicotinamide adenine dinucleotide phosphate-adrenodoxin reductase of pig adrenocortical mitochondria
1977
Hiwatashi, A.; Ichikawa, Y.; Yamano, T.
FEBS Lett.
82
201-205
Isolation of a cDNA for adrenodoxin reductase (ferredoxin-NADP+ reductase). Implications for mitochondrial cytochrome P-450 systems
1987
Hanukoglu, I.; Gutfinger, T.; Haniu, M.; Shively, J.E.
Eur. J. Biochem.
169
449-455
-
Membrane-bound NADPH dehydrogenase- and ferredoxin:NADP oxidoreductase activity involved in electron transport during acetate oxidation to CO2 in Desulfobacter postgatei
1988
Möller-Zinkhan, D.; Thauer, R.K.
Arch. Microbiol.
150
145-154
Inhibition of ferredoxin: NADP+ reductase activity by the hexacyanochromate (III) ion
1986
Armstrong, F.A.; Corbett, S.G.
Biochem. Biophys. Res. Commun.
141
578-583
Molecular heterogeneity of ferredoxin:NADP+ oxidoreductase from the cyanobacterium Anabaena cylindrica
1981
Rowell, P.; Diez, J.; Apte, S.K.; Stewart, W.D.P.
Biochim. Biophys. Acta
657
507-516
Purification and characterization of a ferredoxin-NADP+ oxidoreductase-like enzyme from radish root tissues
1990
Morigasaki, S.; Takata, K.; Suzuki, T.; Wada, K.
Plant Physiol.
93
896-901
Purification and properties of ferredoxin-NADP+ oxidoreductase from the nitrogen-fixing cyanobacteria Anabaena variabilis
1988
Sancho, J.; Peleato, M.L.; Gomez-Moreno, C.; Edmondson, D.E.
Arch. Biochem. Biophys.
260
200-207
Isolation and characterization of pig kidney mitochondrial ferredoxin:NADP+ oxidoreductase
1986
Gnanaiah, W.; Omdahl, J.L.
J. Biol. Chem.
261
12649-12654
-
Ferredoxin-NADP reductase from spinach
1971
Shin, M.
Methods Enzymol.
23
440-447
The oxidation of 5-beta-cholestane-3-alpha, 7-alpha, 12-alpha, 26-tetraol to 5-beta-cholestane-3-alpha, 7-alpha, 12-alpha-triol-26-oic acid via 5-beta-cholestane-3-alpha, 7-alpha, 12-alpha-triol-26-al by rat liver
1966
Masui, T.; Herman, R.; Staple, E.
Biochim. Biophys. Acta
117
266-268
Separation of 5-beta-cholestane-3-alpha,7-alpha,12-alpha,26-tetrol oxidoreductase, and acetaldehyde-NAD oxidoreductase from the soluble fraction of rat liver by gel filtration
1968
Okuda, K.; Takigawa, N.
Biochem. Biophys. Res. Commun.
33
788-793
Purification and properties of two 2-oxoacid:ferredoxin oxidoreductases from Halobacterium halobium
1981
Kerscher, L.; Oesterhelt, D.
Eur. J. Biochem.
116
587-594
2-Oxoacid:ferredoxin oxidoreductase from the thermoacidophilic archaeon, Sulfolobus sp. strain 7
1996
Zhang, Q.; Iwaaki, T.; Wakagi, T.; Oshima, T.
J. Biochem.
120
587-599
Purification and characterization of pyruvate:ferredoxin oxidoreductase from Hydrogenobacter thermophilus TK-6
1997
Yoon, K.S.; Ishii, M.; Kodama, T.; Igarashi, Y.
Arch. Microbiol.
167
275-279
Purification and characterization of pyruvate ferredoxin oxidoreductase from the hyperthermophilic archaeon Pyrococcus furiosus
1993
Blamey, J.M.; Adams, M.W.W.
Biochim. Biophys. Acta
1161
19-27
Characterization and purification of pyruvate:ferredoxin oxidoreductase from Giardia duodenalis
1996
Townson, S.M.; Upcroft, J.A.; Upcroft, P.
Mol. Biochem. Parasitol.
79
183-193
Catalytic properties, molecular composition and sequence alignment of pyruvate:ferredoxin oxidoreductase from the methanogenic archaeon Methanosarcina barkeri (strain Fusaro)
1996
Bock, A.K.; Kunow, J.; Glasemacher, J.; Schönheit, P.
Eur. J. Biochem.
237
35-44
Pyruvate:ferredoxin oxidoreductase from the sulfate-reducing Archaeoglobus fulgidus: molecular composition, catalytic properties, and sequence alignments
1995
Kunow, J.; Linder, D.; Thauer, R.K.
Arch. Microbiol.
163
21-28
-
Carboxylation reactions of pyruvate:ferredoxin oxidoreductase and 2-oxoglutarate:ferredoxin oxidoreductase from Hydrogenobacter thermophilus TK-6
1997
Yoon, K.S.; Ishii, M.; Kodama, T.; Igarashi, Y.
Biosci. Biotechnol. Biochem.
61
510-513
Characterization of a fourth type of 2-keto acid-oxidizing enzyme from a hyperthermophilic archaeon: 2-ketoglutarate ferredoxin oxidoreductase from Thermococcus litoralis
1996
Mai, X.; Adams, M.W.W.
J. Bacteriol.
178
5890-5896
Purification and characterization of 2-oxoglutarate:ferredoxin oxidoreductase from a thermophilic, obligately chemolithoautotrophic bacterium, Hydrogenobacter thermophilus TK-6
1996
Yoon, K.S.; Ishii, M.; Igarashi, Y.; Kodama, T.
J. Bacteriol.
178
3365-3368
Properties of 2-oxoglutarate:ferredoxin oxidoreductase from Thauera aromatica and its role in enzymatic reduction of the aromatic ring
2002
Dörner, E.; Boll, M.
J. Bacteriol.
184
3975-3983
Physiological function and kinetic mechanism of human liver alcohol dehydrogenase as 5beta-cholestane-3alpha,7alpha,12alpha,26-tetrol dehydrogenase
1983
Okuda, A.; Okuda, K.
J. Biol. Chem.
258
2899-2905
Carbon monoxide dehydrogenase from Methanosarcina barkeri. Disaggregation, purification, and physicochemical properties of the enzyme
1987
Grahame, D.A.; Stadtman, T.C.
J. Biol. Chem.
262
3706-3712
Properties of purified carbon monoxide dehydrogenase from Clostridium thermoaceticum, a nickel, iron-sulfur protein
1983
Ragsdale, S.W.; Clark, J.E.; Ljungdahl, L.G.; Lundie, L.L.; Drake, H.L.
J. Biol. Chem.
258
2364-2369
Purification of carbon monoxide dehydrogenase, a nickel enzyme from Clostridium thermoaceticum
1980
Drake, H.L.; Hu, S.I.; Wood, H.G.
J. Biol. Chem.
255
7174-7180
Acetate biosynthesis by acetogenic bacteria. Evidence that carbon monoxide dehydrogenase is the condensing enzyme that catalyzes the final steps of the synthesis
1985
Ragsdale, S.W.; Wood, H.G.
J. Biol. Chem.
260
3970-3977
Nicotinic acid metabolism. IV. Ferredoxin-dependent reduction of 6-hydroxynicotinic acid to 6-oxo-1,4,5,6-tetrahydronicotinic acid
1969
Holcenberg, J.S.; Tsai, L.
J. Biol. Chem.
244
1204-1211
Elucidation of the complete Azorhizobium nicotinate catabolism pathway
1992
Kitts, C.L.; Lapointe, J.P.; Lam, V.T.; Ludwig, R.A.
J. Bacteriol.
174
7791-7797
-
Glutamate synthase in rice roots. Studies on the electron donor specificity
1983
Suzuki, A.; Jacquot, J.P.; Gadal, P.
Phytochemistry
22
1543-1546
-
Functional properties of purified ferredoxin-glutamate synthase from Chlamydomonas reinhardtii
1990
Gotor, C.; Martinez-Rivas, J.M.; Marquez, A.J.; Vega, J.M.
Phytochemistry
29
711-717
-
Circular dichroism, binding and immunological studies on the interaction between spinach ferredoxin and glutamate synthase
1989
Hirasawa, M.; Chang, K.T.; Morrow jr., K.J.; Knaff, D.B.
Biochim. Biophys. Acta
977
150-156
Glutamate synthase in Medicago sativa L. Occurrence and properties of FD-dependent enzyme in plant cell fraction during root nodule development
1988
Suzuki, A.; Carrayol, E.; Zehnacker, C.; Deroche, M.E.
Biochem. Biophys. Res. Commun.
156
1130-1138
Localization of nitrogen-assimilation enzymes in the chloroplast of Chlamydomonas reinhardtii
1988
Fischer, P.; Klein, U.
Plant Physiol.
88
947-952
Different characteristics of the two glutamate synthases in the green leaves of Lycopersicon esculentum
1987
Avila, C.; Botella, J.R.; Canovas, F.M.; Nunez de Castro, I.; Valpuesta, V.
Plant Physiol.
85
1036-1039
-
The interaction of ferredoxin with chloroplast ferredoxin-linked enzymes
1986
Hirasawa, M.; Boyer, J.M.; Gray, K.A.; Davis, D.J.; Knaff, D.B.
Biochim. Biophys. Acta
851
23-28
Detection of the messenger RNA encoding for the ferredoxin-dependent glutamate synthase in maize leaf
1986
Commere, B.; Vidal, J.; Suzuki, A.; Gadal, P.; Caboche, M.
Plant Physiol.
80
859-862
-
Ferredoxin and pyridine nucleotide-dependent glutamate synthase activities in maize endosperm tissue
1985
Misra, S.; Oaks, A.
Plant Sci.
39
1-5
Glutamate synthase in greening callus of Bouvardia ternifolia Schlecht
1985
Murillo, E.; S¯nchez de Jimenez, E.
Planta
163
448-452
Purification and molecular properties of ferredoxin-glutamate synthase from Chlamydomonas reinhardtii
1984
Galvan, F.; Marquez, A.J.; Vega, J.M.
Planta
162
180-187
Separation of two forms of glutamate synthase in leaves of tomato (Lycopersicon esculentum)
1984
Avila, C.; Canovas, F.; Nunez de Castro, I.; Valpuesta, V.
Biochem. Biophys. Res. Commun.
122
1125-1130
-
Occurence of ferredoxin-dependent glutamate synthase in plant cell fraction of soybean root nodules (Glycine max)
1984
Suzuki, A.; Vidal, J.; Nguyen, J.; Gadal, P.
FEBS Lett.
173
204-208
Flavin and iron-sulfur containing ferredoxin-linked glutamate synthase from spinach leaves
1984
Hirasawa, M.; Tamura, G.
J. Biochem.
95
983-994
-
Glutamate synthase isoforms in Tobacco cultured cells
1984
Suzuki, A.; Nato, A.; Gadal, P.
Plant Sci. Lett.
33
93-101
-
The glutamate synthase in heterocysts of Nostoc muscorum
1983
Haeger, K.P.; Danneberg, G.; Bothe, H.
FEMS Microbiol. Lett.
17
179-183
Changes in the activities of ferredoxin- and NADH-glutamate synthase during seedling development of peas
1982
Matoh, T.; Takahashi, E.
Planta
154
289-294
Glutamate synthase from rice leaves
1982
Suzuki, A.; Gadal, P.
Plant Physiol.
69
848-852
-
Occurrence of two forms of glutamate synthase in Chlamydomonas reinhardii
1981
Cullimore, J.V.; Sims, A.P.
Phytochemistry
20
597-600
-
Isolation and partial characterization of homogeneous glutamate synthase from Spinacia oleracea
1980
Tamura, G.; Oto, M.; Hirasawa, M.; Aketagawa, J.
Plant Sci. Lett.
19
209-215
-
The purification and properties of glutamate synthase from spinach leaves, and its dependence on ferredoxin
1980
Tamura, G.; Kanki, M.; Hirasawa, M.; Oto, M.
Agric. Biol. Chem.
44
925-927
Ferredoxin-Sepharose as an affinity absorbent for the purification of glutamate synthase and other ferredoxin-dependent enzymes
1977
Wallsgrove, R.M.; Miflin, B.J.
Biochem. Soc. Trans.
5
269-271
Regulation of the expression of ferredoxin-glutamate synthase in barley
1997
Pajuelo, P.; Pajuelo, E.; Forde, B.G.; Marquez, A.J.
Planta
203
517-525
Ferredoxin-dependent iron-sulfur flavoprotein glutamate synthase (GlsF) from the Cyanobacterium synechocystis sp. PCC 6803: expression and assembly in Escherichia coli
2000
Navarro, F.; Martin-Figueroa, E.; Candau, P.; Florencio, F.J.
Arch. Biochem. Biophys.
379
267-276
Immunocharacterization of Vitis vinifera L. ferredoxin-dependent glutamate synthase, and its spatial and temporal changes during leaf development
2002
Loulakakis, K.A.; Primikirios, N.I.; Nikolantonakis, M.A.; Roubelakis-Angelakis, K.A.
Planta
215
630-638
Reconstitution of light-independent protochlorophyllide reductase from purified bchl and BchN-BchB subunits. In vitro confirmation of nitrogenase-like features of a bacteriochlorophyll biosynthesis enzyme
2000
Fujita, Y.; Bauer, C.E.
J. Biol. Chem.
275
23583-23588
Purification and some properties of the nitrite reductase from the cyanobacterium Phormidium laminosum
1990
Arizmendi, J.M.; Serra, J.L.
Biochim. Biophys. Acta
1040
237-244
Spinach ferredoxin-nitrite reductase: characterization of catalytic activity and interaction of the enzyme with substrates
1989
Mikami, B.; Ida, S.
J. Biochem.
105
47-50
Isolation of cDNA clones coding for spinach nitrite reductase: complete sequence and nitrate induction
1988
Back, E.; Burkhart, W.; Moyer, M.; Privalle, L.; Rothstein, S.
Mol. Gen. Genet.
212
20-26
-
Isolation and partial characterization of homogeneous nitrite reductase from a red alga, Porphyra yezoensis
1987
Ide, T.; Tamura, G.
Agric. Biol. Chem.
51
3391-3393
-
Purification and properties of the siroheme-containing ferredoxin-nitrite reductase from Chlamydomonas reinhardtii
1987
Romero, L.C.; Galvan, F.; Vega, J.M.
Biochim. Biophys. Acta
914
55-63
-
Nitrite reductase in the cyanobacterium Spirulina plantensis
1985
Yabuki, Y.; Mori, E.; Tamura, G.
Agric. Biol. Chem.
49
3061-3062
-
Some properties of ferredoxin-nitrite reductase from Spinacia oleracea
1981
Hirasawa-Soga, M.; Tamura, G.
Agric. Biol. Chem.
45
1615-1620
Functional genomic analysis of the HY2 family of ferredoxin-dependent bilin reductases from oxygenic photosynthetic organisms
2001
Frankenberg, N.; Mukougawa, K.; Kohchi, T.; Lagarias, J.C.
Plant Cell
13
965-978
-
Ferredoxin-linked sulfite reductase from turnip roots
1996
Takahashi, S.; Sakata, T.; Tamura, G.
Biosci. Biotechnol. Biochem.
60
142-144
Purification and characterization of ferredoxin-sulfite reductase from turnip (Brassica rapa) leaves and comparison of properties with ferredoxin-sulfite reductase from turnip roots
1997
Takahashi, S.; Yip, W.C.; Tamura, G.
Biosci. Biotechnol. Biochem.
61
1486-1490
Purification and properties of 5,10-methylenetetrahydrofolate reductase from Clostridium formicoaceticum
1986
Clark, J.E.; Ljungdahl, L.G.
Methods Enzymol.
122
392-399
Purification and properties of 5,10-methylenetetrahydrofolate reductase, an iron-sulfur flavoprotein from Clostridium formicoaceticum
1984
Clark, J.E.; Ljungdahl, L.G.
J. Biol. Chem.
259
10845-10849
Biosynthesis of the cyanobacterial light-harvesting polypeptide phycoerythrocyanin holo-a subunit in a heterologous host
2002
Tooley, A.J.; Glazer, A.N.
J. Bacteriol.
184
4666-4671
Biosynthesis of a fluorescent cyanobacterial C-phycocyanin holo-a subunit in a heterologous host
2001
Tooley, A.J.; Cai, Y.A.; Glazer, A.N.
Proc. Natl. Acad. Sci. USA
98
10560-10565
Phycocyanobilin is the natural precursor of the phytochrome chromophore in the green alga Mesotaenium caldariorum
1997
Wu, S.H; McDowell, M.T.; Lagaris, J.C.
J. Biol. Chem.
272
25700-25705
The Arabidopsis hy2 gene encodes phytochromobilin synthase, a ferredoxin-dependent biliverdin reductase
2001
Kohchi, T.; Mukougawa, K.; Frankenberg, N.; Masuda, M.; Yokota, A.; Lagarias, J.C.
Plant Cell
13
425-436
Purification and biochemical properties of phytochromobilin synthase from etiolated oat seedlings
2001
McDowell, M.T.; Lagarias, J.C.
Plant Physiol.
126
1546-1554
Holophytochrome assembly. Coupled assay for phytochromobilin synthase in organello
1991
Terry, M.J.; Lagarias, J.C.
J. Biol. Chem.
266
22215-22221
Demonstration of NADH-ferredoxin reductase in two saccharolytic Clostridia
1971
Jungermann, K.; Leimenstoll, G.; Rupprecht, E.; Thauer, R.K.
Arch. Mikrobiol.
80
370-372
Isolation, characterization, and biological activity of ferredoxin-NAD+ reductase from the methane oxidizer Methylosinus trichosporium OB3b
1989
Chen, Y.P.; Yoch, D.C.
J. Bacteriol.
171
5012-5016
Purification and properties of NADH-ferredoxinTOL reductase. A component of toluene dioxygenase from Pseudomonas putida
1981
Subramanian, V.; Liu, T.N.; Yeh, W.K.; Narro, M.; Gibson, D.T.
J. Biol. Chem.
256
2723-2730
A new, fast, and sensitive assay for NADH-ferredoxin oxidoreductase detection in clostridia
1981
Blusson, H.; Petitdemange, H.; Gay, R.
Anal. Biochem.
110
176-181
Study of the NADH and NADPH-ferredoxin oxidoreductase activities in Clostridium acetobutylicum
1977
Petitdemange, H.; Cherrier, C.; Bengone, J.M.; Gay, R.
Can. J. Microbiol.
23
152-160
Regulation of the NADH and NADPH-ferredoxin oxidoreductases in clostridia of the butyric group
1976
Petitdemange, H.; Cherrier, C.; Raval, G.; Gay, R.
Biochim. Biophys. Acta
421
334-347
Function of reduced pyridine nucleotide-ferredoxin oxidoreductases in saccharolytic Clostridia
1973
Jungermann, K.; Thauer, R.K.; Leimenstoll, G.; Decker, K.
Biochim. Biophys. Acta
305
268-280
-
Biochemical basis for carbon monoxide tolerance and butanol production by Butyribacterium methylotrophicum
1999
Shen, G.J.; Shieh, J.S.; Grethlein, A.J.; Jain, M.K.; Zeikus, J.G.
Appl. Microbiol. Biotechnol.
51
827-832
Role of hydrophobic partitioning in substrate selectivity and turnover of the ricinus communis stearoyl acyl carrier protein DELTA9 desaturase
1999
Haas, J.A.; Fox, B.G.
Biochemistry
38
12833-12840
Unique property of liver mitochondrial P450 to catalyze the two physiologically important reactions involved in both cholesterol catabolism and vitamin D activation
1990
Usui, E.; Noshiro, M.; Ohyama, Y.; Okuda, K.
FEBS Lett.
274
175-177
Characterization of hydrogenase from the hyperthermophilic archaebacterium, Pyrococcus furiosus
1989
Bryant, F.O.; Adams, M.W.W.
J. Biol. Chem.
264
5070-5079
Purification and catalytic properties of Ech hydrogenase from Methanosarcina barkeri
1999
Meuer, J.; Bartoschek, S.; Koch, J.; Kunkel, A.; Hedderich, R.
Eur. J. Biochem.
265
325-335
A novel type of iron hydrogenase in the green alga Scenedesmus obliquus is linked to the photosynthetic electron transport chain
2001
Florin, L.; Tsokoglou, A.; Happe, T.
J. Biol. Chem.
276
6125-6132
Purification and characterization of hydrogenase from the marine green alga, Chlorococcum littorale
1999
Ueno, Y.; Kurano, N.; Miyachi, S.
FEBS Lett.
443
144-148
Isolation, characterization and N-terminal amino acid sequence of hydrogenase from the green alga Chlamydomonas reinhardtii
1993
Happe, T.; Naber, J.D.
Eur. J. Biochem.
214
475-481
The physical and catalytic properties of hydrogenase II of Clostridium pasteurianum. A comparison with hydrogenase I
1984
Adams, M.W.W.; Mortenson, L.E.
J. Biol. Chem.
259
7045-7055
Purification and properties of the H2-oxidizing (uptake) hydrogenase of the N2-fixing anaerobe Clostridium pasteurianum W5
1984
Chen, J.S.; Blanchard, D.K.
Biochem. Biophys. Res. Commun.
122
9-16
Purification of hydrogenase from Chlamydomonas reinhardtii
1984
Roessler, P.G.; Lien, S.
Plant Physiol.
75
705-709
The effect of electron carriers and other ligands on oxygen stability of clostridial hydrogenase
1981
Khan, S.M.; Klibanov, A.M.; Kaplan, N.O.; Kamen, M.D.
Biochim. Biophys. Acta
659
457-465
Purification and properties of hydrogenase from Megasphaera elsdenii
1979
Van Dijk, C.; Mayhew, S.G.; Grande, H.J.; Veeger, C.
Eur. J. Biochem.
102
317-330
Isolation and properties of a unidirectional H2-oxidizing hydrogenase from the strictly anaerobic N2-fixing bacterium Clostridium pasteurianum W5
1978
Chen, J.S.; Blanchard, D.K.
Biochem. Biophys. Res. Commun.
84
1144-1150
Purification and properties of hydrogenase from Clostridium pasteurianum W5
1974
Chen, J.S.; Mortenson, L.E.
Biochim. Biophys. Acta
371
283-298
Electron pathways involved in H2-metabolism in the green alga Scenedesmus obliquus
2001
Wunschiers, R.; Senger, H.; Schulz, R.
Biochim. Biophys. Acta
1503
271-278
-
The bioenergetics of electron transport to nitrogenase
1987
Haaker, H.; Klugkist, J.
FEMS Microbiol. Rev.
46
57-71
Nitrogenase of Azotobacter vinelandii: kinetic analysis of the Fe protein redox cycle
1998
Duyvis, M.G.; Wassink, H.; Haaker, H.
Biochemistry
37
17345-17354
Oxygen inhibition of nitrogenase activity in Klebsiella pneumoniae
1992
Kavanagh, E.P.; Hill, S.
J. Gen. Microbiol.
139
1307-1314
Hydrogenase, nitrogenase, and hydrogen metabolism in the photosynthetic bacteria
1985
Vignais, P.M.; Colbeau, A.; Willison, J.C.; Jouanneau, Y.
Adv. Microb. Physiol.
26
155-234
-
Isolation and characterization of various nitrogenases
1980
Eady, R.R.
Methods Enzymol.
69
753-778
Nitrogenase
1976
Winter, H.C.; Burris, R.H.
Annu. Rev. Biochem.
45
409-426
Nitrogenase
1974
Eady, R.R.; Postgate, J.R.
Nature
249
805-810
Structure and function of nitrogenase
1979
Mortenson, L.E.; Thorneley, R.N.F.
Annu. Rev. Biochem.
48
387-418
Molybdenum in nitrogenase
1984
Shah, V.K.; Ugalde, R.A.; Imperial, J.; Brill, W.J.
Annu. Rev. Biochem.
53
231-257
-
The physiology and biochemistry of hydrogen metabolism in cyanobacteria
1984
Houchins, J.P.
Biochim. Biophys. Acta
768
227-255
-
Iron-sulfur proteins
1975
Palmer, G.
The Enzymes, 3rd Ed. (Boyer, P. D. , ed. )
12
1-56
Nitrogenases without molybdenum
1989
Pau, R.N.
Trends Biochem. Sci.
14
183-186
-
Coding properties of cloned nitrogenase structural genes from Rhizobium japonicum
1982
Fuhrmann, M.; Hennecke, H.
Mol. Gen. Genet.
187
419-425
-
Cloning and characterization of nitrogenase genes from Anabaena variabilis
1985
Hirschberg, R.; Samson, S.M.; Kimmel, B.E.; Page, K.A.; Collins, J.J.; Myers, J.A.; Yarbrough, L.R.
J. Biotechnol.
2
23-37
-
Crystallographic properties of the MoFe proteins of nitrogenase from Clostridium pasteurianum and Azotobacter vinelandii
1982
Weininger, M.S.; Mortenson, L.E.
Proc. Natl. Acad. Sci. USA
79
379-380
Purification of nitrogenase and crystallization of its Mo-Fe protein
1972
Burns, R.C.; Hardy, R.W.F.
Methods Enzymol.
24
480-496
Genetic evidence for an Azotobacter vinelandii nitrogenase lacking molybdenum and vanadium
1989
Pau, R.N.; Mitchenall, L.A.; Robson, R.L.
J. Bacteriol.
171
124-129
Characterization of the metal clusters in the nitrogenase molybdenum-iron and vanadium-iron proteins of Azotobacter vinelandii using magnetic circular dichroism spectroscopy
1987
Morningstar, J.E.; Johnson, M.K.; Case, E.E.; Hales, B.J.
Biochemistry
26
1795-1800
Isolation and characterization of nitrogenase from Klebsiella pneumoniae
1986
Shah, V.K.
Methods Enzymol.
118
511-519
Nitrogenase complex and its components
1972
Bulen, W.A.; LeComte, J.R.
Methods Enzymol.
24B
456-470
Purification aof nitrogenase from Clostridium pasteurianum
1972
Mortenson, L.E.
Methods Enzymol.
24B
446-456
-
Properties of in vivo nitrogenase activity in Beggiatoa alba
1988
Polman, J.K.; Larkin, J.M.
Arch. Microbiol.
150
126-130
Purification and properties of the nitrogenase of Azospirillum amazonense
1985
Song, S.D.; Hartmann, A.; Burris, R.H.
J. Bacteriol.
164
1271-1277
-
Nitrogenase of Sesbania Rhizobium strain ORS571: purification, properties, and 'switch-off' by ammonia
1985
Kush, A.; Elmerich, C.; Aubert, J.P.
J. Gen. Microbiol.
131
1765-1777
Large-scale purification of high activity Azotobacter vinelandii nitrogenase
1980
Burgess, B.K.; Jacobs, D.B.; Stiefel, E.I.
Biochim. Biophys. Acta
614
196-209
Some properties of the nitrogenase proteins from Clostridium pasteurianum. Molecular weight, subunit structure, isoelectric point and EPR spectra
1974
Tso, M.Y.W.
Arch. Microbiol.
99
71-80
Legume root nodule nitrogenase. Purification, properties, and studies on its genetic control
1974
Whitting, M.J.; Dilworth, M.J.
Biochim. Biophys. Acta
371
337-351
-
Mechanismen zum Schutz der Sauerstoff-labilen Nitrogenase
1988
Oelze, J.
Forum Mikrobiol.
4
116-126
Nitrogenase from Azotobacter chroococcum. Purification and properties of the component proteins
1975
Yates, M.G.; Planque, K.
Eur. J. Biochem.
60
467-476
The nitrogen-fixing system of Corynebacterium autotrophicum. Purification and properties of the nitrogenase components and two ferredoxins
1978
Berndt, H.; Lowe, D.J.; Yates, M.G.
Eur. J. Biochem.
86
133-142
Nitrogenase from Bacillus polymyxa. Purification and properties of the component proteins
1978
Emerich, D.W.; Burris, R.H.
Biochim. Biophys. Acta
536
172-183
Purification and properties of nitrogenase from the cyanobacterium, Anabaena cylindrica
1979
Hallenbeck, P.C.; Kostel, P.J.; Benemann, J.R.
Eur. J. Biochem.
98
275-284
Nitrogenase from the photosynthetic bacterium Rhodopseudomonas capsulata: purification and molecular properties
1982
Hallenbeck, P.C.; Meyer, C.; Vignais, P.M.
J. Bacteriol.
149
708-717
The nitrogen-fixing complex of bacteria
1975
Zumft, W.G.; Mortenson, L.E.
Biochim. Biophys. Acta
416
1-52
Pre-steady-state MgATP-dependent proton production and electron transfer by nitrogenase from Azotobacter vinelandii
1994
Duyvis, M.G.; Wassink, H.; Haaker, H.
Eur. J. Biochem.
225
881-890
Comparative biochemical characterization of the iron-only nitrogenase and the molybdenum nitrogenase from Rhodobacter capsulatus
1997
Schneider, K.; Gollan, U.; Drottboom, M.; Selsemeier-Voigt, S.; Muller, A.
Eur. J. Biochem.
244
789-800
The Fe-only nitrogenase and the Mo nitrogenase from Rhodobacter capsulatus: a comparative study on the redox properties of the metal clusters present in the dinitrogenase components
2002
Siemann, S.; Schneider, K.; Drottboom, M.; Muller, A.
Eur. J. Biochem.
269
1650-1661
Reduction of thiocyanate, cyanate, and carbon disulfide by nitrogenase: kinetic characterization and EPR spectroscopic analysis
1997
Rasche, M.E.; Seefeldt, L.C.
Biochemistry
36
8574-8585
Catalytic and biophysical properties of a nitrogenase Apo-MoFe protein produced by a nifB-deletion mutant of Azotobacter vinelandii
1998
Christiansen, J.; Goodwin, P.J.; Lanzilotta, W.N.; Seefeldt, L.C.; Dean, D.R.
Biochemistry
37
12611-12623
Enhanced efficiency of ATP hydrolysis during nitrogenase catalysis utilizing reductants That form the all-ferrous redox state of the Fe protein
1999
Erickson, J.A.; Nyborg, A.C.; Johnson, J.L.; Truscott, S.M.; Gunn, A.; Nordmeyer, F.R.; Watt, G.D.
Biochemistry
38
14279-14285
Azotobacter vinelandii nitrogenases with substitutions in the FeMo-cofactor environment of the MoFe protein: effects of acetylene or ethylene on interactions with H+, HCN, and CN-
2000
Fisher, K.; Dilworth, M.J.; Kim, C.H.; Newton, W.E.
Biochemistry
39
10855-10865
Characterization of a variant iron protein of nitrogenase that is impaired in its ability to adopt the MgATP-induced conformational change
1998
Bursey, E.H.; Burgess, B.K.
J. Biol. Chem.
273
16927-16934
Isolation and characterization of an acetylene-resistant nitrogenase
2000
Christiansen, J.; Cash, V.L.; Seefeldt, L.C.; Dean, D.R.
J. Biol. Chem.
275
11459-11464
Effects on substrate reduction of substitution of histidine-195 by glutamine in the alpha-subunit of the MoFe protein of Azotobacter vinelandii nitrogenase
1998
Dilworth, M.J.; Fisher, K.; Kim, C.H.; Newton, W.E.
Biochemistry
37
17495-17505
Nitrogenase and biological nitrogen fixation
1994
Kim, J.; Rees, D.C.
Biochemistry
33
389-397
Steady-state kinetic studies of dithionite utilization, component protein interaction, and the formation of an oxidized iron protein intermediate during Azotobacter vinelandii nitrogenase catalysis
1996
Johnson, J.L.; Tolley, A.M.; Erickson, J.A.; Watt, G.D.
Biochemistry
35
11336-11342
Isolation of two forms of the nitrogenase VFe protein from Azotobacter vinelandii
1996
Blanchard, C.Z.; Hales, B.J.
Biochemistry
35
472-478
Role of the MoFe protein alpha-subunit histidine-195 residue in FeMo-cofactor binding and nitrogenase catalysis
1995
Kim, C.H.; Newton, W.E.; Dean, D.R.
Biochemistry
34
2798-2808
-
Reversible inactivation of ferredoxin-nitrate reductase from the cyanobacterium Plectonema boryanum. The role of superoxide anion and cyanide
1986
Mikami, B.; Ida, S.
Plant Cell Physiol.
27
1013-1021
-
Purification and properties of ferredoxin-nitrate reductase from the cyanobacterium Plectonema boryanum
1984
Mikami, B.; Ida, S.
Biochim. Biophys. Acta
791
294-304
-
Hetrerotrophy and nitrate metabolism in a cyanobacterium Phormidium uncinatum
1990
Nath Bagachi, S.; Singh Chauhan, V.; Palod, A.
Curr. Microbiol.
21
53-57
Metabolic interconversion of ferredoxin-nitrate reductase and NADP reductase of Nostoc muscorum
1977
Ortega, T.; Rivas, J.; Cardenas, J.; Losada, M.
Biochem. Biophys. Res. Commun.
78
185-193
Regulation of the nitrate reductase level in anacystis nidulans: Activity decay under nitrogen stress
1984
Herrero, A.; Flores, E.; Guerrero, M.G.
Arch. Biochem. Biophys.
234
454-459
Regulation of nitrate reductase levels in the cyanobacteria Anacystis nidulans, Anabaena sp. strain 7119, and Nostoc sp. strain 6719
1981
Herrero, A.; Flores, E.; Guerrero, M.G.
J. Bacteriol.
145
175-180
Ferredoxin-linked nitrate reductase from the phototrophic bacterium Ectothiorhodospira shaposhnikovii
1975
Malofeeva, I.V.; Kondratieva, E.N.; Rubin, A.B.
FEBS Lett.
53
188-189
Studies on nitrate reductase of Clostridium perfringens. Purification, some properties, and effect of tungstate on its formation
1977
Seki-Chiba, S.; Ishimoto, M.
J. Biochem.
82
1663-1671
Photolysis of water coupled to nitrate reduction by Nostoc muscorum subcellular particles
1976
Ortega, T.; Castillo, F.; Cardenas, J.
Biochem. Biophys. Res. Commun.
71
885-891
Assimilatory nitrate reductase from the haloarchaeon Haloferax mediterranei: Purification and characterization
2001
Martinez-Espinosa, R.M.; Marhuenda-Egea, F.C.; Bonete, M.J.
FEMS Microbiol. Lett.
204
381-385
A cyanobacterial narB gene encodes a ferredoxin-dependent nitrate reductase
1996
Rubio, L.M.; Herrero, A.; Flores, E.
Plant Mol. Biol.
30
845-850
-
Effect of a constant supply of different nitrogen sources on protein and carbohydrate content and enzyme activities of Anabaena variabilis cells
1995
Sanz, A.P.; Moreno-Vivian, C.; Maldonado, J.M.; Gonzales-Fontes, A.
Physiol. Plant.
95
39-44
-
Multimodal kinetics: Cyanobacterial nitrate reductase and other enzyme, transport and binding systems
1998
Nissen, P.; Martin-Nieto, J.
Physiol. Plant.
104
503-511
2-Keto acid oxidoreductases from Pyrococcus furiosus and Thermococcus litoralis
2001
Schut, G.J.; Menon, A.L.; Adams, M.W.W.
Methods Enzymol.
331
144-158
Characterization of a novel tungsten-containing formaldehyde ferredoxin oxidoreductase from the hyperthermophilic archaeon, Thermococcus litoralis. A role for tungsten in peptide catabolism
1993
Mukund, S.; Adams, M.W.
J. Biol. Chem.
268
13592-13600
Structure of a hyperthermophilic tungstopterin enzyme, aldehyde ferredoxin oxidoreductase
1995
Chan, M.K.; Mukund, S.; Kletzin, A.; Adams, M.W.; Rees, D.C.
Science
267
1463-1469
-
Spectroscopic characterization of the tungsten and iron centers in aldehyde ferredoxin oxidoreductases from two hyperthermophilic archaea
1996
Koehler, B.P.; Mukund, S.; Conover, R.C.; Dhawan, I.K.; Roy, R.; Adams, M.W.W.; Johnson, M.K.
J. Am. Chem. Soc.
118
12391-12405
-
Modeling the tungsten sites of inactive and active forms of hyperthermophilic Pyrococcus furiosus aldehyde ferredoxin oxidoreductase
1996
Das, S.K.; Biswas, D.; Maiti, R.; Sarkar, S.
J. Am. Chem. Soc.
118
1387-1397
Purification and molecular characterization of the tungsten-containing formaldehyde ferredoxin oxidoreductase from the hyperthermophilic archaeon Pyrococcus furiosus: the third of a putative five-member tungstoenzyme family
1999
Roy, R.; Mukund, S.; Schut, G.J.; Dunn, D.M.; Weiss, R.; Adams, M.W.
J. Bacteriol.
181
1171-1180
Formaldehyde ferredoxin oxidoreductase from Pyrococcus furiosus: the 1.85 A resolution crystal structure and its mechanistic implications
1999
Hu, Y.; Faham, S.; Roy, R.; Adams, M.W.; Rees, D.C.
J. Mol. Biol.
286
899-914
Aldehyde oxidoreductases from Pyrococcus furiosus
2001
Roy, R.; Menon, A.L.; Adams, M.W.W.
Methods Enzymol.
331
132-144
Glyceraldehyde-3-phosphate ferredoxin oxidoreductase, a novel tungsten-containing enzyme with a potential glycolytic role in the hyperthermophilic archaeon Pyrococcus furiosus
1995
Mukund, S.; Adams, M.W.
J. Biol. Chem.
270
8389-8392
Pyrococcus furiosus glyceraldehyde 3-phosphate oxidoreductase has comparable W6+/5+ and W5+/4+ reduction potentials and unusual [4Fe-4S] EPR properties
1999
Hagedoorn, P.L.; Freije, J.R.; Hagen, W.R.
FEBS Lett.
462
66-70
The ferredoxin-dependent conversion of glyceraldehyde-3-phosphate in the hyperthermophilic archaeon Pyrococcus furiosus represents a novel site of glycolytic regulation
1998
van der Oost, J.; Schut, G.; Kengen, S.W.; Hagen, W.R.; Thomm, M.; de Vos, W.M.
J. Biol. Chem.
273
28149-28154
Characterization of 2-ketoisovalerate ferredoxin oxidoreductase, a new and reversible coenzyme A-dependent enzyme involved in peptide fermentation by hyperthermophilic archaea
1996
Heider, J.; Mai, X.; Adams, M.W.
J. Bacteriol.
178
780-787
Structures and functions of four anabolic 2-oxoacid oxidoreductases in Methanobacterium thermoautotrophicum
1997
Tersteegen, A.; Linder, D.; Thauer, R.K.; Hedderich, R.
Eur. J. Biochem.
244
862-868
Indolepyruvate ferredoxin oxidoreductase from the hyperthermophilic archaeon Pyrococcus furiosus. A new enzyme involved in peptide fermentation
1994
Mai, X.; Adams, M.W.
J. Biol. Chem.
269
16726-16732
In vitro heat effect on heterooligomeric subunit assembly of thermostable indolepyruvate ferredoxin oxidoreductase
1998
Siddiqui, M.A.; Fujiwara, S.; Takagi, M.; Imanaka, T.
FEBS Lett.
434
372-376
The genes for anabolic 2-oxoglutarate:ferredoxin oxidoreductase from Hydrogenobacter thermophilus TK-6
2001
Yun, N.R.; Arai, H.; Ishii, M.; Igarashi, Y.
Biochem. Biophys. Res. Commun.
282
589-594
A novel five-subunit-type 2-oxoglutalate:ferredoxin oxidoreductases from Hydrogenobacter thermophilus TK-6
2002
Yun, N.R.; Yamamoto, M.; Arai, H.; Ishii, M.; Igarashi, Y.
Biochem. Biophys. Res. Commun.
292
280-286
Characterization of two different 2-oxoglutarate:ferredoxin oxidoreductases from Hydrogenobacter thermophilus TK-6
2003
Yamamoto, M.; Arai, H.; Ishii, M.; Igarashi, Y.
Biochem. Biophys. Res. Commun.
312
1297-1302
The anabolic pyruvate oxidoreductase from Methanococcus maripaludis
2003
Lin, W.C.; Yang, Y.L.; Whitman, W.B.
Arch. Microbiol.
179
444-456
Substrate recognition by 2-oxoacid:ferredoxin oxidoreductase from Sulfolobus sp. strain 7
2002
Fukuda, E.; Wakagi, T.
Biochim. Biophys. Acta
1597
74-80
Purification and characterization of the tungsten enzyme aldehyde:ferredoxin oxidoreductase from the hyperthermophilic denitrifier Pyrobaculum aerophilum
2005
Hagedoorn, P.L.; Chen, T.; Schroder, I.; Piersma, S.R.; Vries, S.D.; Hagen, W.R.
J. Biol. Inorg. Chem.
10
259-269
A multisubunit membrane-bound [NiFe] hydrogenase and an NADH-dependent Fe-only hydrogenase in the fermenting bacterium Thermoanaerobacter tengcongensis
2004
Soboh, B.; Linder, D.; Hedderich, R.
Microbiology
150
2451-2463
Electron acceptor specificity of ferredoxin (flavodoxin):NADP+ oxidoreductase from Escherichia coli
2002
Wan, J.T.; Jarrett, J.T.
Arch. Biochem. Biophys.
406
116-126
Purification and characterization of ferredoxin-NADP+ reductase encoded by Bacillus subtilis yumC
2004
Seo, D.; Kamino, K.; Inoue, K.; Sakurai, H.
Arch. Microbiol.
182
80-89
Complex formation between ferredoxin and Synechococcus ferredoxin: nitrate oxidoreductase
2004
Hirasawa, M.; Rubio, L.M.; Griffin, J.L.; Flores, E.; Herrero, A.; Li, J.; Kim, S.K.; Hurley, J.K.; Tollin, G.; Knaff, D.B.
Biochim. Biophys. Acta
1608
155-162
MT FdR: a ferredoxin reductase from M. tuberculosis that couples to MT CYP51
2005
Zanno, A.; Kwiatkowski, N.; Vaz, A.D.; Guardiola-Diaz, H.M.
Biochim. Biophys. Acta
1707
157-169
-
Ferredoxin reductase enhances heterologously expressed cytochrome CYP105D1 in Escherichia coli and Streptomyces lividans
2003
Hussain, H.A.; Ward, J.M.
ENZYME MICROB. TECHNOL.
32
790-800
Probing the role of glutamic acid 139 of Anabaena ferredoxin-NADP+ reductase in the interaction with substrates
2002
Faro, M.; Frago, S.; Mayoral, T.; Hermoso, J.A.; Sanz-Aparicio, J.; Gomez-Moreno, C.; Medina, M.
Eur. J. Biochem.
269
4938-4947
Open questions in ferredoxin-NADP+ reductase catalytic mechanism
2003
Carrillo, N.; Ceccarelli, E.A.
Eur. J. Biochem.
270
1900-1915
Thermal inactivation of reduced ferredoxin (flavodoxin):NADP+ oxidoreductase from Escherichia coli
2002
Jarrett, J.T.; Wan, J.T.
FEBS Lett.
529
237-242
Energy-converting [NiFe] hydrogenases from archaea and extremophiles: ancestors of complex I
2004
Hedderich, R.
J. Bioenerg. Biomembr.
36
65-75
Placental cytochrome P450scc (CYP11A1): comparison of catalytic properties between conditions of limiting and saturating adrenodoxin reductase
2002
Tuckey, R.C.; Headlam, M.J.
J. Steroid Biochem. Mol. Biol.
81
153-158
Accumulation of ferrous iron in Chlamydomonas reinhardtii. Influence of CO2 and anaerobic induction of the reversible hydrogenase
2003
Semin, B.K.; Davletshina, L.N.; Novakova, A.A.; Kiseleva, T.Y.; Lanchinskaya, V.Y.; Aleksandrov, A.Y.; Seifulina, N.; Ivanov, II; Seibert, M.; Rubin, A.B.
Plant Physiol.
131
1756-1764
-
Purification and characterization of ferredoxin-nitrite reductase from the eukaryotic microalga Monoraphidium braunii
2002
Vigara, J.; Garcia-Sanchez, M.I.; Garbayo, I.; Vilchez, C.; Vega, J.M.
Plant Physiol. Biochem.
40
401-405
Roles of the species-specific subdomain and the N-terminal peptide of Toxoplasma gondii ferredoxin-NADP+ reductase in ferredoxin binding
2006
Pandini, V.; Caprini, G.; Tedeschi, G.; Seeber, F.; Zanetti, G.; Aliverti, A.
Biochemistry
45
3563-3571
Overexpression and characterization of dark-operative protochlorophyllide reductase from Rhodobacter capsulatus
2005
Nomata, J.; Swem, L.R.; Bauer, C.E.; Fujita, Y.
Biochim. Biophys. Acta
1708
229-237
Kinetic and binding studies with purified recombinant proteins ferredoxin reductase, ferredoxin and cytochrome P450 comprising the morpholine mono-oxygenase from Mycobacterium sp. strain HE5
2005
Sielaff, B.; Andreesen, J.R.
FEBS J.
272
1148-1159
WOR5, a novel tungsten-containing aldehyde oxidoreductase from Pyrococcus furiosus with a broad substrate specificity
2005
Bevers, L.E.; Bol, E.; Hagedoorn, P.L.; Hagen, W.R.
J. Bacteriol.
187
7056-7061
Purifications and characterizations of a ferredoxin and its related 2-oxoacid:ferredoxin oxidoreductase from the hyperthermophilic archaeon, Sulfolobus solfataricus P1
2006
Park, Y.J.; Yoo, C.B.; Choi, S.Y.; Lee, H.B.
J. Biochem. Mol. Biol.
39
46-54
Redox chemistry of tungsten and iron-sulfur prosthetic groups in Pyrococcus furiosus formaldehyde ferredoxin oxidoreductase
2006
Bol, E.; Bevers, L.E.; Hagedoorn, P.L.; Hagen, W.R.
J. Biol. Inorg. Chem.
11
999-1006
Biochemical and spectroscopic characterization of an aldehyde oxidoreductase isolated from Desulfovibrio aminophilus
2006
Thapper, A.; Rivas, M.G.; Brondino, C.D.; Ollivier, B.; Fauque, G.; Moura, I.; Moura, J.J.
J. Inorg. Biochem.
100
44-50
Efficient phage-mediated pigment biosynthesis in oceanic cyanobacteria
2008
Dammeyer, T.; Bagby, S.C.; Sullivan, M.B.; Chisholm, S.W.; Frankenberg-Dinkel, N.
Curr. Biol.
18
442-448
Thermococcus profundus 2-ketoisovalerate ferredoxin oxidoreductase, a key enzyme in the archaeal energy-producing amino acid metabolic pathway
2005
Ozawa, Y.; Nakamura, T.; Kamata, N.; Yasujima, D.; Urushiyama, A.; Yamakura, F.; Ohmori, D.; Imai, T.
J. Biochem.
137
101-107
Deletion of iscR stimulates recombinant clostridial Fe-Fe hydrogenase activity and H2-accumulation in Escherichia coli BL21(DE3)
2008
Akhtar, M.K.; Jones, P.R.
Appl. Microbiol. Biotechnol.
78
853-862
Biochemical and structural characterization of Pseudomonas aeruginosa Bfd and FPR: ferredoxin NADP+ reductase and not ferredoxin is the redox partner of heme oxygenase under iron-starvation conditions
2007
Wang, A.; Zeng, Y.; Han, H.; Weeratunga, S.; Morgan, B.N.; Moenne-Loccoz, P.; Schoenbrunn, E.; Rivera, M.
Biochemistry
46
12198-12211
Atomic resolution modeling of the ferredoxin:[FeFe] hydrogenase complex from Chlamydomonas reinhardtii
2007
Chang, C.H.; King, P.W.; Ghirardi, M.L.; Kim, K.
Biophys. J.
93
3034-3045
Brownian dynamics and molecular dynamics study of the association between hydrogenase and ferredoxin from Chlamydomonas reinhardtii
2008
Long, H.; Chang, C.H.; King, P.W.; Ghirardi, M.L.; Kim, K.
Biophys. J.
95
3753-3766
Characterization of two 2[4Fe4S] ferredoxins from Clostridium acetobutylicum
2008
Guerrini, O.; Burlat, B.; Leger, C.; Guigliarelli, B.; Soucaille, P.; Girbal, L.
Curr. Microbiol.
56
261-267
NB-protein (BchN-BchB) of dark-operative protochlorophyllide reductase is the catalytic component containing oxygen-tolerant Fe-S clusters
2008
Nomata, J.; Ogawa, T.; Kitashima, M.; Inoue, K.; Fujita, Y.
FEBS Lett.
582
1346-1350
Purification and characterization of putative alkaline [Ni-Fe] hydrogenase from unicellular marine green alga, Tetraselmis kochinensis NCIM 1605
2007
Bhosale, S.H.; Pant, A.; Khan, M.I.
Microbiol. Res.
164
131-137
Glyceraldehyde-3-phosphate ferredoxin oxidoreductase from Methanococcus maripaludis
2007
Park, M.O.; Mizutani, T.; Jones, P.R.
J. Bacteriol.
189
7281-7289
A novel variant of ferredoxin-dependent sulfite reductase having preferred substrate specificity for nitrite in the unicellular red alga Cyanidioschyzon merolae
2009
Sekine, K.; Sakakibara, Y.; Hase, T.; Sato, N.
Biochem. J.
423
91-98
Inhibitors of the molybdenum cofactor containing 4-hydroxybenzoyl-CoA reductase
2008
Johannes, J.; Unciuleac, M.C.; Friedrich, T.; Warkentin, E.; Ermler, U.; Boll, M.
Biochemistry
47
4964-4972
The ferredoxin-NADP+ reductase/ferredoxin electron transfer system of Plasmodium falciparum
2009
Balconi, E.; Pennati, A.; Crobu, D.; Pandini, V.; Cerutti, R.; Zanetti, G.; Aliverti, A.
FEBS J.
276
3825-3836
Ferredoxin-NADP reductase from the thermophilic hydrogen-oxidizing bacterium, Hydrogenobacter thermophilus TK-6
2009
Ikeda, T.; Nakamura, M.; Arai, H.; Ishii, M.; Igarashi, Y.
FEMS Microbiol. Lett.
297
124-130
In vitro and in vivo interactions of ferredoxin-NADP+ reductases in Pseudomonas putida
2009
Yeom, J.; Jeon, C.O.; Madsen, E.L.; Park, W.
J. Biochem.
145
481-491
Subcellular localization of ferredoxin-NADP+ oxidoreductase in phycobilisome retaining oxygenic photosysnthetic organisms
2008
Morsy, F.; Nakajima, M.; Yoshida, T.; Fujiwara, T.; Sakamoto, T.; Wada, K.
Photosynth. Res.
95
73-85
Light-dependent and light-independent protochlorophyllide oxidoreductases in the chromatically adapting cyanobacterium Fremyella diplosiphon UTEX 481
2009
Shui, J.; Saunders, E.; Needleman, R.; Nappi, M.; Cooper, J.; Hall, L.; Kehoe, D.; Stowe-Evans, E.
Plant Cell Physiol.
50
1507-1521
Toxoplasma gondii ferredoxin-NADP+ reductase: Role of ionic interactions in stabilization of native conformation and structural cooperativity
2008
Singh, K.; Bhakuni, V.
Proteins
71
1879-1888
Hydrogenase/ferredoxin charge-transfer complexes: effect of hydrogenase mutations on the complex association
2009
Long, H.; King, P.W.; Ghirardi, M.L.; Kim, K.
J. Phys. Chem. A
113
4060-4067
Photosystem I: function and physiology
2001
Chitnis, P.R.
Annu. Rev. Plant Physiol. Plant Mol. Biol.
52
593-626
Kinetic evidence for the PsaE-dependent transient ternary complex photosystem I/ferredoxin/ferredoxin:NADP+ reductase in a cyanobacterium
1999
van Thor, J.J.; Geerlings, T.H.; Matthijs, H.C.; Hellingwerf, K.J.
Biochemistry
38
12735-12746
Location of the iron-sulfur clusters FA and FB in photosystem I: an electron paramagnetic resonance study of spin relaxation enhancement of P700+
1999
Lakshmi, K.V.; Jung, Y.S.; Golbeck, J.H.; Brudvig, G.W.
Biochemistry
38
13210-13215
The stable assembly of newly synthesized PsaE into the photosystem I complex occurring via the exchange mechanism is facilitated by electrostatic interactions
2002
Lushy, A.; Verchovsky, L.; Nechushtai, R.
Biochemistry
41
11192-11199
Crystal structure of the L protein of Rhodobacter sphaeroides light-independent protochlorophyllide reductase with MgADP bound: a homologue of the nitrogenase Fe protein
2008
Sarma, R.; Barney, B.M.; Hamilton, T.L.; Jones, A.; Seefeldt, L.C.; Peters, J.W.
Biochemistry
47
13004-13015
Competitive inhibition of electron donation to photosystem 1 by metal-substituted plastocyanin
2008
Jansson, H.; Hansson, O.
Biochim. Biophys. Acta
1777
1116-1121
Transcriptional profiling of an Fd-GOGAT1/GLU1 mutant in Arabidopsis thaliana reveals a multiple stress response and extensive reprogramming of the transcriptome
2010
Kissen, R.; Winge, P.; Tran, D.H.; Joerstad, T.S.; Stoerseth, T.R.; Christensen, T.; Bones, A.M.
BMC Genomics
11
190
Carbon-dependent control of electron transfer and central carbon pathway genes for methane biosynthesis in the Archaean, Methanosarcina acetivorans strain C2A
2010
Rohlin, L.; Gunsalus, R.P.
BMC Microbiol.
10
62
Carboxylation reaction catalyzed by 2-oxoglutarate:ferredoxin oxidoreductases from Hydrogenobacter thermophilus
2010
Yamamoto, M.; Ikeda, T.; Arai, H.; Ishii, M.; Igarashi, Y.
Extremophiles
14
79-85
EPR study of 1Asp-3Cys ligated 4Fe-4S iron-sulfur cluster in NB-protein (BchN-BchB)2 of a dark-operative protochlorophyllide reductase complex
2011
Kondo, T.; Nomata, J.; Fujita, Y.; Itoh, S.
FEBS Lett.
585
214-218
bchFNBH bacteriochlorophyll synthesis genes of Rhodobacter capsulatus and identification of the third subunit of light-independent protochlorophyllide reductase in bacteria and plants
1993
Burke, D.H.; Alberti, M.; Hearst, J.E.
J. Bacteriol.
175
2414-2422
The iron-hydrogenase of Thermotoga maritima utilizes ferredoxin and NADH synergistically: a new perspective on anaerobic hydrogen production
2009
Schut, G.J.; Adams, M.W.
J. Bacteriol.
191
4451-4457
Characterization of energy-conserving hydrogenase B in Methanococcus maripaludis
2010
Major, T.A.; Liu, Y.; Whitman, W.B.
J. Bacteriol.
192
4022-4030
Function of Ech hydrogenase in ferredoxin-dependent, membrane-bound electron transport in Methanosarcina mazei
2010
Welte, C.; Kallnik, V.; Grapp, M.; Bender, G.; Ragsdale, S.; Deppenmeier, U.
J. Bacteriol.
192
674-678
Subunit composition of photosystem I complex that catalyzes light-dependent transfer of electrons from plastocyanin to ferredoxin
1991
Takabe, T.; Iwasaki, Y.; Hibino, T.; Ando, T.
J. Biochem.
110
622-627
The location of plastocyanin in vascular plant photosystem I
2002
Ruffle, S.V.; Mustafa, A.O.; Kitmitto, A.; Holzenburg, A.; Ford, R.C.
J. Biol. Chem.
277
25692-25696
Identification of the chlB gene and the gene product essential for the light-independent chlorophyll biosynthesis in the cyanobacterium Plectonema boryanum
1996
Fujita, Y.; Takagi, H.; Hase, T.
Plant Cell Physiol.
37
313-323
Cloning of the gene encoding a protochlorophyllide reductase: the physiological significance of the co-existence of light-dependent and -independent protochlorophyllide reduction systems in the cyanobacterium Plectonema boryanum
1998
Fujita, Y.; Takagi, H.; Hase, T.
Plant Cell Physiol.
39
177-185
Cloning, expression and purification of the luminal domain of spinach photosystem 1 subunit PsaF functional in binding to plastocyanin and with a disulfide bridge required for folding
2011
Farkas, D.; Franzen, L.G.; Hansson, Ã.
Protein Expr. Purif.
78
156-166
Optimizing the conditions of a multiple reaction monitoring assay for membrane proteins: Quantification of cytochrome P450 11A1 and adrenodoxin reductase in bovine adrenal cortex and retina
2010
Liao, W.; Heo, G.; Dodder, N.; Pikuleva, I.; Turko, I.
Anal. Chem.
82
5760-5767
Interaction of NADPH-adrenodoxin reductase with NADP+ as studied by pulse radiolysis
1995
Kobayashi, K.; Miura, S.; Miki, M.; Ichikawa, Y.; Tagawa, S.
Biochemistry
34
12932-12936
Construction and characterization of a catalytic fusion protein system: P-45011beta-adrenodoxin reductase-adrenodoxin
2000
Cao, P.R.; Buelow, H.; Dumas, B.; Bernhardt, R.
Biochim. Biophys. Acta
1476
253-264
Identification of the lysine residue responsible for coenzyme A binding in the heterodimeric 2-oxoacid:ferredoxin oxidoreductase from Sulfolobus tokodaii, a thermoacidophilic archaeon, using 4-fluoro-7-nitrobenzofurazan as an affinity label
2009
Luo, J.; Fukuda, E.; Takase, H.; Fushinobu, S.; Shoun, H.; Wakagi, T.
Biochim. Biophys. Acta
1794
335-340
Direct expression of adrenodoxin reductase in Escherichia coli and the functional characterization
1993
Sagara, Y.; Wada, A.; Takata, Y.; Waterman, M.; Sekimizu, K.; Horiuchi, T.
Biol. Pharm. Bull.
16
627-630
Stoichiometry of mitochondrial cytochromes P-450, adrenodoxin and adrenodoxin reductase in adrenal cortex and corpus luteum. Implications for membrane organization and gene regulation
1986
Hanukoglu, I.; Hanukoglu, Z.
Eur. J. Biochem.
157
27-31
cDNA sequence of adrenodoxin reductase. Identification of NADP-binding sites in oxidoreductases
1989
Hanukoglu, I.; Gutfinger, T.
Eur. J. Biochem.
180
479-484
Role of a highly conserved YPITP motif in 2-oxoacid:ferredoxin oxidoreductase: heterologous expression of the gene from Sulfolobus sp.strain 7, and characterization of the recombinant and variant enzymes
2001
Fukuda, E.; Kino, H.; Matsuzawa, H.; Wakagi, T.
Eur. J. Biochem.
268
5639-5646
Enzymatic oxidation of NADP+ to its 4-oxo derivative is a side-reaction displayed only by the adrenodoxin reductase type of ferredoxin-NADP+ reductases
2007
de Rosa, M.; Pennati, A.; Pandini, V.; Monzani, E.; Zanetti, G.; Aliverti, A.
FEBS J.
274
3998-4007
Purification and crystallization of NADPH adrenodoxin reductase from bovine adrenocortical mitochondria
1975
Sugiyama, T.; Yamano, T.
FEBS Lett.
52
145-148
Active complex between adrenodoxin reductase and adrenodoxin in the cytochrome P-450scc reduction reaction
1989
Hara, T.; Kimura, T.
J. Biochem.
105
601-605
Studies on the reaction mechanism of NADPH-adrenodoxin reductase with NADPH
1982
Sakamoto, H.; Ohta, M.; Miura, R.; Sugiyama, T.; Yamano, T.; Miyake, Y.
J. Biochem.
92
1941-1950
Purification and properties of the tightly bound reduced nicotinamide adenine dinucleotide phosphate-adrenodoxin reductase of bovine adrenocortical mitochondria
1982
Hiwatashi, A.; Ichikawa, Y.
J. Biochem.
92
335-342
Studies on adrenal steroid hydroxylases. Molecular and catalytic properties of adrenodoxin reductase (a flavoprotein)
1973
Chu, J.; Kimura, T.
J. Biol. Chem.
248
2089-2094
Kidney and adrenal mitochondria contain two forms of NADPH-adrenodoxin reductase-dependent iron-sulfur proteins. Isolation of the two porcine renal ferredoxins
1986
Driscoll, W.; Omdahl, J.
J. Biol. Chem.
261
4122-4125
Modification of histidine 56 in adrenodoxin with diethyl pyrocarbonate inhibited the interaction with cytochrome P-450scc and adrenodoxin reductase
1991
Miura, S.; Tomita, S.; Ichikawa, Y.
J. Biol. Chem.
266
19212-19216
The structure of adrenodoxin reductase of mitochondrial P450 systems: electron transfer for steroid biosynthesis
1999
Ziegler, G.A.; Vonrhein, C.; Hanukoglu, I.; Schulz, G.E.
J. Mol. Biol.
289
981-990
A tricistronic human adrenodoxin reductase-adrenodoxin-cytochrome P450 27A1 vector system for substrate hydroxylation in Escherichia coli
2011
Salamanca-Pinzon, S.; Guengerich, F.
Protein Expr. Purif.
79
231-236
Sugar utilization in the hyperthermophilic, sulfate-reducing archaeon Archaeoglobus fulgidus strain 7324: starch degradation to acetate and CO2 via a modified Embden-Meyerhof pathway and acetyl-CoA synthetase (ADP-forming)
2001
Labes, A.; Schoenheit, P.
Arch. Microbiol.
176
329-338
Site-directed mutations of the 4Fe-ferredoxin from the hyperthermophilic archaeon Pyrococcus furiosus: role of the cluster-coordinating aspartate in physiological electron transfer reactions
1997
Zhou, Z.H.; Adams, M.W.
Biochemistry
36
10892-10900
The delta-subunit of pyruvate ferredoxin oxidoreductase from Pyrococcus furiosus is a redox-active, iron-sulfur protein: evidence for an ancestral relationship with 8Fe-type ferredoxins
1998
Menon, A.L.; Hendrix, H.; Hutchins, A.; Verhagen, M.F.; Adams, M.W.
Biochemistry
37
12838-12846
-
Redox chemistry of biological tungsten: an EPR study of the aldehyde oxidoreductase from Pyrococcus furiosus
1996
Arendsen, A.F.; de Vocht, M.; Bulsink, Y.B.M.; Hagen, W.R.
Chemistry
1
292-296
Why is the molybdenum-substituted tungsten-dependent formaldehyde ferredoxin oxidoreductase not active? A quantum chemical study
2013
Liao, R.Z.
J. Biol. Inorg. Chem.
18
175-181
Tungsten-dependent formaldehyde ferredoxin oxidoreductase: reaction mechanism from quantum chemical calculations
2011
Liao, R.Z.; Yu, J.G.; Himo, F.
J. Inorg. Biochem.
105
927-936
Pyruvate ferredoxin oxidoreductase from the hyperthermophilic archaeon, Pyrococcus furiosus, functions as a CoA-dependent pyruvate decarboxylase
1997
Ma, K.; Hutchins, A.; Sung, S.J.; Adams, M.W.
Proc. Natl. Acad. Sci. USA
94
9608-9613
Structural and mechanistic insight into the ferredoxin-mediated two-electron reduction of bilins
2011
Busch, A.W.; Reijerse, E.J.; Lubitz, W.; Frankenberg-Dinkel, N.; Hofmann, E.
Biochem. J.
439
257-264
Attachment of noncognate chromophores to CpcA of Synechocystis sp. PCC 6803 and Synechococcus sp. PCC 7002 by heterologous expression in Escherichia coli
2011
Alvey, R.M.; Biswas, A.; Schluchter, W.M.; Bryant, D.A.
Biochemistry
50
4890-4902
Four Cys residues in heterodimeric 2-oxoacid:ferredoxin oxidoreductase are required for CoA-dependent oxidative decarboxylation but not for a non-oxidative decarboxylation
2014
Yan, Z.; Fushinobu, S.; Wakagi, T.
Biochim. Biophys. Acta
1844
736-743
Re-evaluation of the function of the F420 dehydrogenase in electron transport of Methanosarcina mazei
2011
Welte, C.; Deppenmeier, U.
FEBS J.
278
1277-1287
Pyruvate:ferredoxin oxidoreductase and thioredoxin reductase are involved in 5-nitroimidazole activation while flavin metabolism is linked to 5-nitroimidazole resistance in Giardia lamblia
2011
Leitsch, D.; Burgess, A.G.; Dunn, L.A.; Krauer, K.G.; Tan, K.; Duchene, M.; Upcroft, P.; Eckmann, L.; Upcroft, J.A.
J. Antimicrob. Chemother.
66
1756-1765
Fur activates expression of the 2-oxoglutarate oxidoreductase genes (oorDABC) in Helicobacter pylori
2012
Gilbreath, J.J.; West, A.L.; Pich, O.Q.; Carpenter, B.M.; Michel, S.; Merrell, D.S.
J. Bacteriol.
194
6490-6497
Study of the thiol/disulfide redox systems of the anaerobe Desulfovibrio vulgaris points out pyruvate:ferredoxin oxidoreductase as a new target for thioredoxin 1
2011
Pieulle, L.; Stocker, P.; Vinay, M.; Nouailler, M.; Vita, N.; Brasseur, G.; Garcin, E.; Sebban-Kreuzer, C.; Dolla, A.
J. Biol. Chem.
286
7812-7821
Pyruvate:ferredoxin oxidoreductase is coupled to light-independent hydrogen production in Chlamydomonas reinhardtii
2013
Noth, J.; Krawietz, D.; Hemschemeier, A.; Happe, T.
J. Biol. Chem.
288
4368-4377
Indolepyruvate ferredoxin oxidoreductase: An oxygen-sensitive iron-sulfur enzyme from the hyperthermophilic archaeon Thermococcus profundus
2012
Ozawa, Y.; Siddiqui, M.A.; Takahashi, Y.; Urushiyama, A.; Ohmori, D.; Yamakura, F.; Arisaka, F.; Imai, T.
J. Biosci. Bioeng.
114
23-27
Ferredoxin and related enzymes from Sulfolobus
2001
Iwasaki, T.; Oshima, T.
Methods Enzymol.
334
3-22
Fermentation enzymes of Giardia intestinalis, pyruvate:ferredoxin oxidoreductase and hydrogenase, do not localize to its mitosomes
2011
Emelyanov, V.V.; Goldberg, A.V.
Microbiology
157
1602-1611
The bifunctional pyruvate decarboxylase/pyruvate ferredoxin oxidoreductase from Thermococcus guaymasensis
2014
Eram, M.S.; Oduaran, E.; Ma, K..
Archaea
2014
349379
Swapping FAD binding motifs between plastidic and bacterial ferredoxin-NADP(H) reductases
2011
Musumeci, M.A.; Botti, H.; Buschiazzo, A.; Ceccarelli, E.A.
Biochemistry
50
2111-2122
3-Phosphoglycerate is an allosteric activator of pyruvate kinase from the hyperthermophilic archaeon Pyrobaculum aerophilum
2013
Solomons, J.T.; Johnsen, U.; Schönheit, P.; Davies, C.
Biochemistry
52
5865-5875
An NMR study elucidating the binding of Mg(II) and Mn(II) to spinach plastocyanin. Regulation of the binding of plastocyanin to subunit PsaF of photosystem I
2011
Farkas, D.; Hansson, O.
Biochim. Biophys. Acta
1807
1539-1548
Ferredoxin-dependent glutamate synthase: involvement in ammonium assimilation in Haloferax mediterranei
2013
Pire, C.; MartÃnez-Espinosa, R.M.; Perez-Pomares, F.; Esclapez, J.; Bonete, M.J.
Extremophiles
18
147-159
The ferredoxin: NAD+ oxidoreductase (Rnf) from the acetogen Acetobacterium woodii requires Na+ and is reversibly coupled to the membrane potential
2013
Hess, V.; Schuchmann, K.; Müller, V.
J. Biol. Chem.
288
31496-31502
Engineering the respiratory membrane-bound hydrogenase of the hyperthermophilic archaeon Pyrococcus furiosus and characterization of the catalytically active cytoplasmic subcomplex
2015
McTernan, P.M.; Chandrayan, S.K.; Wu, C.H.; Vaccaro, B.J.; Lancaster, W.A.; Adams, M.W.
Protein Eng. Des. Sel.
28
1-8
Genetic examination and mass balance analysis of pyruvate/amino acid oxidation pathways in the hyperthermophilic archaeon Thermococcus kodakarensis
2014
Nohara, K.; Orita, I.; Nakamura, S.; Imanaka, T.; Fukui, T.
J. Bacteriol.
196
3831-3839
Crystal structures of archaeal 2-oxoacid:ferredoxin oxidoreductases from Sulfolobus tokodaii
2016
Yan, Z.; Maruyama, A.; Arakawa, T.; Fushinobu, S.; Wakagi, T.
Sci. Rep.
6
33061
The structure of an oxalate oxidoreductase provides insight into microbial 2-oxoacid metabolism
2015
Gibson, M.I.; Brignole, E.J.; Pierce, E.; Can, M.; Ragsdale, S.W.; Drennan, C.L.
Biochemistry
54
4112-4120
Homology modeling and in silico site directed mutagenesis of pyruvate ferredoxin oxidoreductase from Clostridium thermocellum
2015
Saranyah, K.; Kalva, S.; Mukund, N.; Singh, S.K.; Saleena, L.M.
Comb. Chem. High Throughput Screen.
18
975-989
A structural phylogeny for understanding 2-oxoacid oxidoreductase function
2016
Gibson, M.I.; Chen, P.Y.; Drennan, C.L.
Curr. Opin. Struct. Biol.
41
54-61
Bioinorganic modeling chemistry of carbon monoxide dehydrogenases: description of model complexes, current status and possible future scopes
2014
Majumdar, A.
Dalton Trans.
43
12135-12145
-
The catalytic bias of 2-oxoacid: ferredoxin oxidoreductase in CO2: evolution and reduction through a ferredoxin-mediated electrocatalytic assay
2016
Li, B.; Elliott, S.
Electrochim. Acta
199
349-356
Functional and genomic diversity of methylotrophic Rhodocyclaceae: description of Methyloversatilis discipulorum sp. nov
2015
Smalley, N.E.; Taipale, S.; De Marco, P.; Doronina, N.V.; Kyrpides, N.; Shapiro, N.; Woyke, T.; Kalyuzhnaya, M.G.
Int. J. Syst. Evol. Microbiol.
65
2227-2233
A reversible electron-bifurcating ferredoxin- and NAD-dependent [FeFe]-hydrogenase (HydABC) in Moorella thermoacetica
2013
Wang, S.; Huang, H.; Kahnt, J.; Thauer, R.K.
J. Bacteriol.
195
1267-1275
Genetic examination of initial amino acid oxidation and glutamate catabolism in the hyperthermophilic archaeon Thermococcus kodakarensis
2013
Yokooji, Y.; Sato, T.; Fujiwara, S.; Imanaka, T.; Atomi, H.
J. Bacteriol.
195
1940-1948
Hydrogen formation and its regulation in Ruminococcus albus: Involvement of an electron-bifurcating [FeFe]-hydrogenase, of a non-electron-bifurcating [FeFe]-hydrogenase, and of a putative hydrogen-sensing [FeFe]-hydrogenase
2014
Zheng, Y.; Kahnt, J.; Kwon, I.H.; Mackie, R.I.; Thauer, R.K.
J. Bacteriol.
196
3840-3852
Simultaneous involvement of a tungsten-containing aldehyde:ferredoxin oxidoreductase and a phenylacetaldehyde dehydrogenase in anaerobic phenylalanine metabolism
2014
Debnar-Daumler, C.; Seubert, A.; Schmitt, G.; Heider, J.
J. Bacteriol.
196
483-492
Influence of 120 kDa pyruvate:ferredoxin oxidoreductase on pathogenicity of Trichomonas vaginalis
2016
Song, H.O.
Korean J. Parasitol.
54
71-74
H2-independent growth of the hydrogenotrophic methanogen Methanococcus maripaludis
2013
Costa, K.C.; Lie, T.J.; Jacobs, M.A.; Leigh, J.A.
mBio
4
e00062-13
Investigations of the efficient electrocatalytic interconversions of carbon dioxide and carbon monoxide by nickel-containing carbon monoxide dehydrogenases
2014
Wang, V.C.; Ragsdale, S.W.; Armstrong, F.A.
Met. Ions Life Sci.
14
71-97
Kinetic properties of pyruvate ferredoxin oxidoreductase of intestinal sulfate-reducing bacteria Desulfovibrio piger Vib-7 and Desulfomicrobium sp. Rod-9
2015
Kushkevych, I.V.
Pol. J. Microbiol.
64
107-114
Distinct electron transfer from ferredoxin-thioredoxin reductase to multiple thioredoxin isoforms in chloroplasts
2017
Yoshida, K.; Hisabori, T.
Biochem. J.
474
1347-1360
Importance of hydrogen bonding in fine tuning the [2Fe-2S] cluster redox potential of HydC from Thermotoga maritima
2016
Birrell, J.A.; Laurich, C.; Reijerse, E.J.; Ogata, H.; Lubitz, W.
Biochemistry
55
4344-4355
Enhancement of photophysical and photosensitizing properties of flavin adenine dinucleotide by mutagenesis of the C-terminal extension of a bacterial flavodoxin reductase
2015
Valle, L.; Abatedaga, I.; Vieyra, F.E.; Bortolotti, A.; Cortez, N.; Borsarelli, C.D.
Chemphyschem
16
872-883
-
The ferredoxin Rr-HydB is required for the H2-evolving activity of Rr-HydA, a [FeFe]-hydrogenase of Rhodospirillum rubrum
2015
Kim, E.; Tong, X.; Lee, J.
Int. J. Hydrogen Energy
40
4320-4328
Hydrogen formation and its regulation in Ruminococcus albus involvement of an electron-bifurcating [FeFe]-hydrogenase, of a non-electron-bifurcating [FeFe]-hydrogenase, and of a putative hydrogen-sensing [FeFe]-hydrogenase
2014
Zheng, Y.; Kahnt, J.; Kwon, I.H.; Mackie, R.I.; Thauer, R.K.
J. Bacteriol.
196
3840-3852
Structural and mutational studies of an electron transfer complex of maize sulfite reductase and ferredoxin
2016
Kim, J.Y.; Nakayama, M.; Toyota, H.; Kurisu, G.; Hase, T.
J. Biochem.
160
101-109
Intact functional fourteen-subunit respiratory membrane-bound [NiFe]-hydrogenase complex of the hyperthermophilic archaeon Pyrococcus furiosus
2014
McTernan, P.M.; Chandrayan, S.K.; Wu, C.H.; Vaccaro, B.J.; Lancaster, W.A.; Yang, Q.; Fu, D.; Hura, G.L.; Tainer, J.A.; Adams, M.W.
J. Biol. Chem.
289
19364-19372
Insights into flavin-based electron bifurcation via the NADH-dependent reduced ferredoxin NADP oxidoreductase structure
2015
Demmer, J.K.; Huang, H.; Wang, S.; Demmer, U.; Thauer, R.K.; Ermler, U.
J. Biol. Chem.
290
21985-21995
-
Ferredoxin thioredoxin reductase is required for proper chloroplast development and is involved in the regulation of plastid gene expression in Arabidopsis thaliana
2014
Wang, P.; Liu, J.; Liu, B.; Da, Q.; Feng, D.; Su, J.; Zhang, Y.; Wang, J.; Wang, H.
Mol. Plant
7
1586-1590
Replacement of Tyr50 stacked on the si-face of the isoalloxazine ring of the flavin adenine dinucleotide prosthetic group modulates Bacillus subtilis ferredoxin-NADP+ oxidoreductase activity toward NADPH
2015
Seo, D.; Naito, H.; Nishimura, E.; Sakurai, T.
Photosynth. Res.
125
321-328
Kinetics of NADP+/NADPH reduction-oxidation catalyzed by the ferredoxin-NAD(P)+ reductase from the green sulfur bacterium Chlorobaculum tepidum
2016
Seo, D.; Kitashima, M.; Sakurai, T.; Inoue, K.
Photosynth. Res.
130
479-489
Ferredoxin thioredoxin reductase (FTR) links the regulation of oxygenic photosynthesis to deeply rooted bacteria
2013
Balsera, M.; Uberegui, E.; Susanti, D.; Schmitz, R.; Mukhopadhyay, B.; Schürmann, P.; Buchanan, B.
Planta
237
619-635
Expression of spinach ferredoxin-thioredoxin reductase using tandem T7 promoters and application of the purified protein for invitro light-dependent thioredoxin-reduction system
2016
Okegawa, Y.; Motohashi, K.
Protein Expr. Purif.
121
46-51
Interaction of photosystem I from Phaeodactylum tricornutum with plastocyanins as compared with its native cytochrome c6 reunion with a lost donor
2015
Bernal-Bayard, P.; Pallara, C.; Carmen Castell, M.; Molina-Heredia, F.; Fernandez-Recio, J.; Hervas, M.; Navarro, J.
Biochim. Biophys. Acta
1847
1549-1559
-
Redox regulation of the antimycin A sensitive pathway of cyclic electron flow around photosystem I in higher plant thylakoids
2016
Strand, D.; Fisher, N.; Davis, G.; Kramer, D.
Biochim. Biophys. Acta
1857
1-6
Mutations in algal and cyanobacterial photosystem I that independently affect the yield of initial charge separation in the two electron transfer cofactor branches
2018
Badshah, S.; Sun, J.; Mula, S.; Gorka, M.; Baker, P.; Luthra, R.; Lin, S.; van der Est, A.; Golbeck, J.; Redding, K.
Biochim. Biophys. Acta
1859
42-55
Molecular and functional characterization of ferredoxin NADP(H) oxidoreductase from Gracilaria chilensis and its complex with ferredoxin
2017
Vorphal, M.A.; Bruna, C.; Wandersleben, T.; Dagnino-Leone, J.; Lobos-Gonzalez, F.; Uribe, E.; Martinez-Oyanedel, J.; Bunster, M.
Biol. Res.
50
39
Controlling electron transfer between the two cofactor chains of photosystem I by the redox state of one of their components
2015
Santabarbara, S.; Bullock, B.; Rappaport, F.; Redding, K.
Biophys. J.
108
1537-1547
Catalytic properties, molecular composition and sequence alignments of pyruvate ferredoxin oxidoreductase from the methanogenic archaeon Methanosarcina barkeri (strain Fusaro)
1996
Bock, A.; Kunow, J.; Glasemacher, J.; Schönheit, P.
Eur. J. Biochem.
237
35-44
Characterization of 4-hydroxy-3-methylbut-2-en-1-yl diphosphate synthase (IspG) from Plasmodium vivax and its potential as an antimalarial drug target
2017
Saggu, G.S.; Garg, S.; Pala, Z.R.; Yadav, S.K.; Kochar, S.K.; Kochar, D.K.; Saxena, V.
Int. J. Biol. Macromol.
96
466-473
Dual-located WHIRLY1 interacting with LHCA1 alters photochemical activities of photosystem I and is involved in light adaptation in Arabidopsis
2017
Huang, D.; Lin, W.; Deng, B.; Ren, Y.; Miao, Y.
Int. J. Mol. Sci.
18
E2352
Superoxide generated in the chloroplast stroma causes photoinhibition of photosystem I in the shade-establishing tree species Psychotria henryi
2017
Huang, W.; Yang, Y.; Zhang, J.; Hu, H.; Zhang, S.
Photosynth. Res.
132
293-303
-
Interaction of various types of photosystem I complexes with exogenous electron acceptors
2017
Petrova, A.; Boskhomdzhieva, B.; Milanovsky, G.; Koksharova, O.; Mamedov, M.; Cherepanov, D.; Semenov, A.
Photosynth. Res.
133
175-184
Kinetic modeling of electron transfer reactions in photosystem I complexes of various structures with substituted quinone acceptors
2017
Milanovsky, G.; Petrova, A.; Cherepanov, D.; Semenov, A.
Photosynth. Res.
133
185-199
Gallium ferredoxin as a tool to study the effects of ferredoxin binding to photosystem I without ferredoxin reduction
2017
Mignee, C.; Mutoh, R.; Krieger-Liszkay, A.; Kurisu, G.; Setif, P.
Photosynth. Res.
134
251-263
NDH-mediated cyclic electron flow around photosystem I is crucial for C4 photosynthesis
2016
Ishikawa, N.; Takabayashi, A.; Noguchi, K.; Tazoe, Y.; Yamamoto, H.; Von Caemmerer, S.; Sato, F.; Endo, T.
Plant Cell Physiol.
57
2020-2028
Cyclic electron flow around photosystem I is enhanced at low pH
2014
Tongra, T.; Bharti, S.; Jajoo, A.
Plant Physiol. Biochem.
83
194-199
Fermentation of glycerol by Anaerobium acetethylicum and its potential use in biofuel production
2017
Patil, Y.; Junghare, M.; Müller, N.
Microb. Biotechnol.
10
203-217
Amixicile, a novel inhibitor of pyruvate ferredoxin oxidoreductase, shows efficacy against Clostridium difficile in a mouse infection model
2012
Warren, C.A.; van Opstal, E.; Ballard, T.E.; Kennedy, A.; Wang, X.; Riggins, M.; Olekhnovich, I.; Warthan, M.; Kolling, G.L.; Guerrant, R.L.; Macdonald, T.L.; Hoffman, P.S.
Antimicrob. Agents Chemother.
56
4103-4111
Anaerobic metabolism of catechol by the denitrifying bacterium Thauera aromatica - a result of promiscuous enzymes and regulators?
2008
Ding, B.; Schmeling, S.; Fuchs, G.
J. Bacteriol.
190
1620-1630
The in vitro metabolism of 11beta-hydroxyprogesterone and 11-ketoprogesterone to 11-ketodihydrotestosterone in the backdoor pathway
2018
van Rooyen, D.; Gent, R.; Barnard, L.; Swart, A.C.
J. Steroid Biochem. Mol. Biol.
178
203-212
Heterologous expression of the Clostridium carboxidivorans CO dehydrogenase alone or together with the acetyl coenzyme A synthase enables both reduction of CO2 and oxidation of CO by Clostridium acetobutylicum
2017
Carlson, E.; Papoutsakis, E.
Appl. Environ. Microbiol.
83
e00829
New light on ancient enzymes - in vitro CO2 fixation by pyruvate synthase of Desulfovibrio africanus and Sulfolobus acidocaldarius
2019
Witt, A.; Pozzi, R.; Diesch, S.; Haedicke, O.; Grammel, H.
FEBS J.
286
4494-4508
The pyruvate ferredoxin oxidoreductase of the thermophilic acetogen, Thermoanaerobacter kivui
2021
Katsyv, A.; Schoelmerich, M.C.; Basen, M.; Mueller, V.
FEBS open bio
11
1332-1342
Pattern of expression and substrate specificity of chloroplast ferredoxins from Chlamydomonas reinhardtii
2009
Terauchi, A.M.; Lu, S.-F.; Zaffagnini, M.; Tappa, S.; Hirasawa, M.; Tripathy, J.N.; Knaff, D.B.; Farmer, P.J.; Lemaire, S.D.; Hase, T.; Merchant, S.S.
J. Biol. Chem.
284
25867-25878
The thermophilic biomass-degrading bacterium Caldicellulosiruptor bescii utilizes two enzymes to oxidize glyceraldehyde 3-phosphate during glycolysis
2019
Scott, I.M.; Rubinstein, G.M.; Poole, F.L.; Lipscomb, G.L.; Schut, G.J.; Williams-Rhaesa, A.M.; Stevenson, D.M.; Amador-Noguez, D.; Kelly, R.M.; Adams, M.W.W.
J. Biol. Chem.
294
9995-10005
A reverse TCA cycle 2-oxoacid ferredoxin oxidoreductase that makes C-C bonds from CO2
2019
Chen, P.Y.; Li, B.; Drennan, C.L.; Elliott, S.J.
Joule
3
595-611
Identification of the ferredoxin interaction sites on ferredoxin-dependent glutamate synthase from Synechocystis sp. PCC 6803
2017
Hirasawa, M.; Solis, J.; Vaidyanathan, N.; Srivastava, A.P.; Wynn, R.M.; Sutton, R.B.; Knaff, D.B.
Photosynth. Res.
134
317-328
Role of N, N-dimethylglycine and its catabolism to sarcosine in Chromohalobacter salexigens DSM 3043
2020
Yang, T.; Shao, Y.; Guo, L.; Meng, X.; Yu, H.; Lu, W.
Appl. Environ. Microbiol.
86
e01186-20
Is reduced ferredoxin the physiological electron donor for MetVF-type methylenetetrahydrofolate reductases in acetogenesis? a hypothesis
2021
Oeppinger, C.; Kremp, F.; Mueller, V.
Int. Microbiol.
25
75-88