BRENDA - Enzyme Database show
show all sequences of 1.14.14.137

Abscisic acid metabolic genes of wheat (Triticum aestivum L.) identification and insights into their functionality in seed dormancy and dehydration tolerance

Son, S.; Chitnis, V.R.; Liu, A.; Gao, F.; Nguyen, T.N.; Ayele, B.T.; Planta 244, 429-447 (2016)

Data extracted from this reference:

Cloned(Commentary)
Commentary
Organism
gene TaCYP707A1B, cloning from seedlings, expression analysis, ectopic expression of genes TaNCED2A and TaCYP707A1B in Arabidopsis thaliana Col-0 ecotype, using Agrobacterium tumefaciens AGL1 transformation method, results in altered seed abscisic acid level and dormancy with no effect on leaf abscisic acid content and transpirational water loss, phenotypes, overview. Quantitative and semiquantitative real-time and RT-PCR expression analysis
Triticum aestivum
Engineering
Amino acid exchange
Commentary
Organism
additional information
generation of Tricticum aestivum mutant lines cyp707a1, cyp707a2, and cyp707a1/cyp707a2, phenotypes, overview
Triticum aestivum
Natural Substrates/ Products (Substrates)
Natural Substrates
Organism
Commentary (Nat. Sub.)
Natural Products
Commentary (Nat. Pro.)
Organism (Nat. Pro.)
Reversibility
(+)-abscisate + [reduced NADPH-hemoprotein reductase] + O2
Triticum aestivum
-
8'-hydroxyabscisate + [oxidized NADPH-hemoprotein reductase] + H2O
-
-
?
Organism
Organism
Primary Accession No. (UniProt)
Commentary
Textmining
Triticum aestivum
B8QBY2
cv. AC Domain
-
Source Tissue
Source Tissue
Commentary
Organism
Textmining
seedling
spatiotemporal expression pattern of TaCYP707A1B gene in hexaploid wheat
Triticum aestivum
-
silique
CYP707A1 transcripts are highly abundant in the silique
Triticum aestivum
-
Substrates and Products (Substrate)
Substrates
Commentary Substrates
Literature (Substrates)
Organism
Products
Commentary (Products)
Literature (Products)
Organism (Products)
Reversibility
(+)-abscisate + [reduced NADPH-hemoprotein reductase] + O2
-
746158
Triticum aestivum
8'-hydroxyabscisate + [oxidized NADPH-hemoprotein reductase] + H2O
-
-
-
?
Cofactor
Cofactor
Commentary
Organism
Structure
cytochrome P-450
-
Triticum aestivum
NADPH-hemoprotein reductase
A flavoprotein containing both FMN and FAD. This enzyme catalyses the transfer of electrons from NADPH, an obligatory two-electron donor, to microsomal P-450 monooxygenases, EC 1.14.14._
Triticum aestivum
Cloned(Commentary) (protein specific)
Commentary
Organism
gene TaCYP707A1B, cloning from seedlings, expression analysis, ectopic expression of genes TaNCED2A and TaCYP707A1B in Arabidopsis thaliana Col-0 ecotype, using Agrobacterium tumefaciens AGL1 transformation method, results in altered seed abscisic acid level and dormancy with no effect on leaf abscisic acid content and transpirational water loss, phenotypes, overview. Quantitative and semiquantitative real-time and RT-PCR expression analysis
Triticum aestivum
Cofactor (protein specific)
Cofactor
Commentary
Organism
Structure
cytochrome P-450
-
Triticum aestivum
NADPH-hemoprotein reductase
A flavoprotein containing both FMN and FAD. This enzyme catalyses the transfer of electrons from NADPH, an obligatory two-electron donor, to microsomal P-450 monooxygenases, EC 1.14.14._
Triticum aestivum
Engineering (protein specific)
Amino acid exchange
Commentary
Organism
additional information
generation of Tricticum aestivum mutant lines cyp707a1, cyp707a2, and cyp707a1/cyp707a2, phenotypes, overview
Triticum aestivum
Natural Substrates/ Products (Substrates) (protein specific)
Natural Substrates
Organism
Commentary (Nat. Sub.)
Natural Products
Commentary (Nat. Pro.)
Organism (Nat. Pro.)
Reversibility
(+)-abscisate + [reduced NADPH-hemoprotein reductase] + O2
Triticum aestivum
-
8'-hydroxyabscisate + [oxidized NADPH-hemoprotein reductase] + H2O
-
-
?
Source Tissue (protein specific)
Source Tissue
Commentary
Organism
Textmining
seedling
spatiotemporal expression pattern of TaCYP707A1B gene in hexaploid wheat
Triticum aestivum
-
silique
CYP707A1 transcripts are highly abundant in the silique
Triticum aestivum
-
Substrates and Products (Substrate) (protein specific)
Substrates
Commentary Substrates
Literature (Substrates)
Organism
Products
Commentary (Products)
Literature (Products)
Organism (Products)
Reversibility
(+)-abscisate + [reduced NADPH-hemoprotein reductase] + O2
-
746158
Triticum aestivum
8'-hydroxyabscisate + [oxidized NADPH-hemoprotein reductase] + H2O
-
-
-
?
General Information
General Information
Commentary
Organism
evolution
the enzyme is a member of the CYP707A family
Triticum aestivum
malfunction
deletion in TaABA8'OH1 leads to increased abscisic acid level in the spikes and therefore increased drought sensitivity, phenotype, overview. Germination of the cyp707a1 cyp707a2 seeds appear not to be affected by the cold treatment, which induces early germination phenotype in the control wild-type and TaCYP707A1B-C seeds of transgenic Arabidospis thaliana, similar rate of transpirational water loss between the wild-type and mutant TaNCED2A-OE, cyp707a1/cyp707a2 and TaCYP707A1B-C lines during the entire period of dehydration
Triticum aestivum
metabolism
biosynthesis and catabolism of abscisic acid (ABA) in plants are primarily regulated by 9-cis-epoxycarotenoid dioxygenases (NCEDs) and ABA 8'-hydroxylase (ABA8'OH), respectively
Triticum aestivum
physiological function
the abscisic acid catabolic enzyme ABA8'OH is encoded by members of the cytochrome P450 monooxygenase 707A (CYP707A) gene family, which play important roles in regulating seed abscisic acid level during seed development and therefore dormancy. Role of the B genome copy of the cytochrome P450 monooxygenase 707A1 (CYP707A1) gene of hexaploid wheat (TaCYP707A1B), which encodes ABA8'OH, in regulating seed dormancy and leaf dehydration tolerance
Triticum aestivum
General Information (protein specific)
General Information
Commentary
Organism
evolution
the enzyme is a member of the CYP707A family
Triticum aestivum
malfunction
deletion in TaABA8'OH1 leads to increased abscisic acid level in the spikes and therefore increased drought sensitivity, phenotype, overview. Germination of the cyp707a1 cyp707a2 seeds appear not to be affected by the cold treatment, which induces early germination phenotype in the control wild-type and TaCYP707A1B-C seeds of transgenic Arabidospis thaliana, similar rate of transpirational water loss between the wild-type and mutant TaNCED2A-OE, cyp707a1/cyp707a2 and TaCYP707A1B-C lines during the entire period of dehydration
Triticum aestivum
metabolism
biosynthesis and catabolism of abscisic acid (ABA) in plants are primarily regulated by 9-cis-epoxycarotenoid dioxygenases (NCEDs) and ABA 8'-hydroxylase (ABA8'OH), respectively
Triticum aestivum
physiological function
the abscisic acid catabolic enzyme ABA8'OH is encoded by members of the cytochrome P450 monooxygenase 707A (CYP707A) gene family, which play important roles in regulating seed abscisic acid level during seed development and therefore dormancy. Role of the B genome copy of the cytochrome P450 monooxygenase 707A1 (CYP707A1) gene of hexaploid wheat (TaCYP707A1B), which encodes ABA8'OH, in regulating seed dormancy and leaf dehydration tolerance
Triticum aestivum
Other publictions for EC 1.14.14.137
No.
1st author
Pub Med
title
organims
journal
volume
pages
year
Activating Compound
Application
Cloned(Commentary)
Crystallization (Commentary)
Engineering
General Stability
Inhibitors
KM Value [mM]
Localization
Metals/Ions
Molecular Weight [Da]
Natural Substrates/ Products (Substrates)
Organic Solvent Stability
Organism
Oxidation Stability
Posttranslational Modification
Purification (Commentary)
Reaction
Renatured (Commentary)
Source Tissue
Specific Activity [micromol/min/mg]
Storage Stability
Substrates and Products (Substrate)
Subunits
Temperature Optimum [C]
Temperature Range [C]
Temperature Stability [C]
Turnover Number [1/s]
pH Optimum
pH Range
pH Stability
Cofactor
Ki Value [mM]
pI Value
IC50 Value
Activating Compound (protein specific)
Application (protein specific)
Cloned(Commentary) (protein specific)
Cofactor (protein specific)
Crystallization (Commentary) (protein specific)
Engineering (protein specific)
General Stability (protein specific)
IC50 Value (protein specific)
Inhibitors (protein specific)
Ki Value [mM] (protein specific)
KM Value [mM] (protein specific)
Localization (protein specific)
Metals/Ions (protein specific)
Molecular Weight [Da] (protein specific)
Natural Substrates/ Products (Substrates) (protein specific)
Organic Solvent Stability (protein specific)
Oxidation Stability (protein specific)
Posttranslational Modification (protein specific)
Purification (Commentary) (protein specific)
Renatured (Commentary) (protein specific)
Source Tissue (protein specific)
Specific Activity [micromol/min/mg] (protein specific)
Storage Stability (protein specific)
Substrates and Products (Substrate) (protein specific)
Subunits (protein specific)
Temperature Optimum [C] (protein specific)
Temperature Range [C] (protein specific)
Temperature Stability [C] (protein specific)
Turnover Number [1/s] (protein specific)
pH Optimum (protein specific)
pH Range (protein specific)
pH Stability (protein specific)
pI Value (protein specific)
Expression
General Information
General Information (protein specific)
Expression (protein specific)
KCat/KM [mM/s]
KCat/KM [mM/s] (protein specific)
745629
Sales
-
Salt tolerance in apple seedl ...
Malus domestica
J. Plant Growth Regul.
36
643-650
2017
-
-
1
-
-
-
2
-
-
-
-
1
-
1
-
-
-
-
-
2
-
-
1
-
-
-
-
-
-
-
-
2
-
-
-
-
-
1
2
-
-
-
-
2
-
-
-
-
-
1
-
-
-
-
-
2
-
-
1
-
-
-
-
-
-
-
-
-
-
2
2
-
-
-
746096
Arbona
Depletion of abscisic acid le ...
Citrus sinensis x Citrus trifoliata
Plant Mol. Biol.
93
623-640
2017
-
-
1
-
-
-
-
-
-
-
-
1
-
1
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
2
-
-
-
-
-
1
2
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
2
2
2
2
-
-
746066
Cai
-
Characterization and expressi ...
Morus notabilis
Plant Cell Tissue Organ. Cult.
127
237-249
2016
-
-
1
-
-
-
1
-
-
-
-
6
-
6
-
-
-
-
-
4
-
-
6
-
-
-
-
-
-
-
-
3
-
-
-
-
-
6
12
-
-
-
-
6
-
-
-
-
-
6
-
-
-
-
-
24
-
-
6
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
746158
Son
Abscisic acid metabolic genes ...
Triticum aestivum
Planta
244
429-447
2016
-
-
1
-
1
-
-
-
-
-
-
1
-
3
-
-
-
-
-
2
-
-
1
-
-
-
-
-
-
-
-
2
-
-
-
-
-
1
2
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
2
-
-
1
-
-
-
-
-
-
-
-
-
-
4
4
-
-
-
746462
Takeuchi
Abscinazole-E3M, a practical ...
Arabidopsis thaliana
Sci. Rep.
6
37060
2016
-
-
1
-
-
-
12
-
-
-
-
1
-
5
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
2
1
-
10
-
-
1
2
-
-
-
10
12
1
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
746269
Liu
Cloning and expression analys ...
Arachis hypogaea
PLoS ONE
9
e97025
2014
-
-
1
-
-
-
-
-
1
-
-
2
-
5
-
-
-
-
-
5
-
-
2
1
1
-
-
-
1
-
-
2
-
2
-
-
-
2
4
-
-
-
-
-
-
-
2
-
-
2
-
-
-
-
-
10
-
-
2
2
2
-
-
-
2
-
-
2
2
2
4
4
-
-
727261
Chono
Isolation of a wheat (Triticum ...
Triticum aestivum
Breed. Sci.
63
104-115
2013
-
-
-
-
-
-
-
-
-
-
-
3
-
5
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
-
1
-
-
3
-
-
728206
Suttle
Wounding of potato tubers indu ...
Solanum tuberosum
J. Plant Physiol.
170
560-566
2013
-
-
-
-
-
-
-
-
-
-
-
1
-
2
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
1
-
-
1
-
-
711477
Okazaki
Abscinazole-E1, a novel chemic ...
Arabidopsis thaliana
Bioorg. Med. Chem.
19
406-413
2011
-
-
1
-
-
-
5
-
-
-
-
1
-
2
-
-
-
-
-
-
-
-
1
-
1
-
-
-
1
-
-
-
1
-
-
-
-
1
-
-
-
-
-
5
1
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
1
-
-
-
1
-
-
-
-
-
-
-
-
-
711425
Todoroki
Selectivity improvement of an ...
Arabidopsis thaliana
Bioorg. Med. Chem. Lett.
20
5506-5509
2010
-
-
1
-
-
-
8
-
-
-
-
1
-
2
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
5
-
-
-
-
1
-
-
-
-
-
8
5
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
712862
Ren
Cloning and expression analysi ...
Prunus avium, Prunus avium Hongdeng
J. Plant Physiol.
167
1486-1493
2010
-
-
1
-
-
-
-
-
-
-
-
8
-
11
-
-
-
-
-
2
-
-
8
-
-
-
-
-
-
-
-
-
-
-
-
-
-
4
-
-
-
-
-
-
-
-
-
-
-
8
-
-
-
-
-
5
-
-
8
-
-
-
-
-
-
-
-
-
2
2
8
4
-
-
696761
Todoroki
Abscinazole-F1, a conformation ...
Arabidopsis thaliana, Malus sylvestris, Oryza sativa
Bioorg. Med. Chem.
17
6620-6630
2009
-
1
1
-
-
-
39
1
1
-
-
3
-
6
-
-
1
-
-
1
-
-
5
-
-
-
-
-
-
-
-
-
8
-
14
-
1
1
-
-
-
-
14
39
8
1
1
-
-
3
-
-
-
1
-
1
-
-
5
-
-
-
-
-
-
-
-
-
-
3
3
-
-
-
700781
Cheng
Antagonism between abscisic ac ...
Arabidopsis thaliana
Plant Mol. Biol.
71
61-80
2009
1
-
-
-
-
-
1
-
-
-
-
1
-
1
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
1
-
-
-
-
-
1
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
702592
Todoroki
Enlarged analogues of uniconaz ...
Arabidopsis thaliana
Bioorg. Med. Chem. Lett.
19
5782-5786
2009
-
-
1
-
-
-
12
1
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
2
-
-
-
-
1
-
-
-
-
-
12
2
1
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
705948
Liu
Nitric oxide-induced rapid dec ...
Arabidopsis thaliana
New Phytol.
183
1030-1042
2009
-
-
-
-
-
-
-
-
-
-
-
-
-
5
-
-
-
-
-
1
-
-
4
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
4
-
-
4
-
-
-
-
-
-
-
-
-
2
1
3
8
-
-
706181
Zhu
Glucose-induced delay of seed ...
Oryza sativa
Plant Cell Physiol.
50
644-651
2009
-
-
-
-
-
-
1
-
-
-
-
-
-
3
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
2
-
-
706300
Okamoto
High humidity induces abscisic ...
Arabidopsis thaliana
Plant Physiol.
149
825-834
2009
1
-
1
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
5
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
1
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
5
-
-
1
-
-
-
-
-
-
-
-
-
1
1
1
1
-
-
706301
Barrero
Anatomical and transcriptomic ...
Hordeum vulgare
Plant Physiol.
150
1006-1021
2009
1
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
2
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
1
-
-
-
-
-
-
-
-
-
1
1
1
1
-
-
706304
Mialoundama
Abscisic acid negatively regul ...
Nicotiana plumbaginifolia
Plant Physiol.
150
1556-1566
2009
-
-
1
-
-
-
-
-
-
-
-
-
-
7
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
1
-
-
1
-
-
706360
Liu
Rapid accumulation of NO regul ...
Arabidopsis thaliana
Plant Signal. Behav.
4
905-907
2009
1
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
706376
Nitsch
Abscisic acid levels in tomato ...
Solanum lycopersicum
Planta
229
1335-1346
2009
3
-
1
-
-
-
-
-
-
-
-
-
-
3
-
-
-
-
-
5
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
3
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
5
-
-
1
-
-
-
-
-
-
-
-
-
1
1
1
1
-
-
685537
Todoroki
Structure-activity relationshi ...
Arabidopsis thaliana
Bioorg. Med. Chem.
16
3141-3152
2008
-
-
-
-
-
-
10
-
1
-
-
1
-
2
-
-
-
-
-
-
-
-
2
-
1
-
-
-
1
-
-
-
6
-
-
-
-
-
-
-
-
-
-
10
6
-
1
-
-
1
-
-
-
-
-
-
-
-
2
-
1
-
-
-
1
-
-
-
-
-
-
-
-
-
685522
Ueno
Asymmetrical ligand binding by ...
Arabidopsis thaliana
Bioorg. Med. Chem.
15
6311-6322
2007
-
-
-
-
-
-
5
-
1
-
-
1
-
3
-
-
-
-
-
-
-
-
3
-
1
-
-
-
1
-
-
-
2
-
-
-
-
-
-
-
-
-
-
5
2
-
1
-
-
1
-
-
-
-
-
-
-
-
3
-
1
-
-
-
1
-
-
-
-
2
2
-
-
-
685583
Shimomura
Effect of the minor ABA metabo ...
Arabidopsis thaliana
Bioorg. Med. Chem. Lett.
17
4977-4981
2007
-
-
-
-
-
-
3
-
-
-
-
1
-
2
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
3
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
689492
Saika
Ethylene promotes submergence- ...
Oryza sativa
Plant Cell Physiol.
48
287-298
2007
1
-
1
-
-
-
-
-
1
-
-
3
-
7
-
-
-
-
-
2
-
-
3
-
-
-
-
-
-
-
-
-
-
-
-
3
-
3
-
-
-
-
-
-
-
-
3
-
-
3
-
-
-
-
-
6
-
-
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
661345
Ueno
A lead compound for the develo ...
Arabidopsis thaliana
Bioorg. Med. Chem. Lett.
15
5226-5229
2005
-
-
-
-
-
-
3
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
-
-
3
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
691206
Ueno
Differences between the struct ...
Arabidopsis thaliana
Bioorg. Med. Chem.
13
3359-3370
2005
-
-
-
-
-
-
24
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
18
-
-
-
-
-
-
-
-
-
10
-
-
-
-
-
-
-
-
-
-
24
10
-
-
-
-
-
-
-
-
-
-
-
-
-
18
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
661588
Kushiro
The Arabidopsis cytochrome P45 ...
Arabidopsis thaliana
EMBO J.
23
1647-1656
2004
-
-
-
-
1
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
663120
Saito
Arabidopsis CYP707As encode (+ ...
Arabidopsis thaliana
Plant Physiol.
134
1439-1449
2004
-
-
1
-
-
-
1
1
1
-
2
-
-
2
-
-
-
-
-
-
-
-
2
1
-
-
-
-
-
-
-
1
-
-
-
-
-
1
1
-
-
-
-
1
-
1
1
-
2
-
-
-
-
-
-
-
-
-
2
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
661056
Cutler
Inhibitors of abscisic acid 8' ...
Zea mays
Biochemistry
39
13614-13624
2000
-
-
-
-
-
-
11
1
-
-
-
-
-
3
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
11
-
-
-
-
-
-
-
-
-
-
11
11
1
-
-
-
-
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
663111
Krochko
(+)-Abscisic acid 8'-hydroxyla ...
Zea mays
Plant Physiol.
118
849-860
1998
1
-
-
-
-
-
4
-
1
-
-
-
-
2
-
-
-
-
1
1
-
-
-
-
-
-
-
-
1
-
-
2
-
-
-
1
-
-
2
-
-
-
-
4
-
-
1
-
-
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
661348
Rose
-
8'-Acetylene ABA: an irreversi ...
Zea mays
Bioorg. Med. Chem. Lett.
7
2543-2546
1997
-
-
-
-
-
-
2
-
-
-
-
-
-
1
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
662532
Cutler
-
Induction of (+)-abscisic acid ...
Zea mays
J. Exp. Bot.
48
1787-1795
1997
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
1
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
663039
Windsor
Induction of ABA 8'-hydroxylas ...
Arabidopsis thaliana, Solanum tuberosum
Phytochemistry
45
931-934
1997
-
-
-
-
-
-
-
-
-
-
-
-
-
4
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-