BRENDA - Enzyme Database
show all sequences of 1.3.5.4

Differences in protonation of ubiquinone and menaquinone in fumarate reductase from Escherichia coli

Maklashina, E.; Hellwig, P.; Rothery, R.A.; Kotlyar, V.; Sher, Y.; Weiner, J.H.; Cecchini, G.; J. Biol. Chem. 281, 26655-26664 (2006)

Data extracted from this reference:

Engineering
Protein Variants
Commentary
Organism
E29F
mutation in subunit FrdC, dramatic decrease in enzymatic reactions with menaqunione. Elimination of the negative charge in E29 mutant enzymes results in significantly increased stabilization of both ubiquinone and menaquinone semiquinones
Escherichia coli
E29L
mutation in subunit FrdC, dramatic decrease in enzymatic reactions with menaqunione. Elimination of the negative charge in E29 mutant enzymes results in significantly increased stabilization of both ubiquinone and menaquinone semiquinones
Escherichia coli
K228L
mutation in subunit FrdB. Residue K228 provides a strong hydrogen bond to menaquinone and is essential for reactions with both ubiquinone and menaquinone
Escherichia coli
K228R
mutation in subunit FrdB. Residue K228 provides a strong hydrogen bond to menaquinone and is essential for reactions with both ubiquinone and menaquinone
Escherichia coli
Inhibitors
Inhibitors
Commentary
Organism
Structure
2-n-heptyl-4-hydroxyquinoline-N-oxide
-
Escherichia coli
KM Value [mM]
KM Value [mM]
KM Value Maximum [mM]
Substrate
Commentary
Organism
Structure
0.0018
-
menaquinone
mutant E29L, pH 7.0, 30°C
Escherichia coli
0.004
-
menaquinone
wild-type, pH 7.0, 30°C
Escherichia coli
Organism
Organism
UniProt
Commentary
Textmining
Escherichia coli
-
-
-
Substrates and Products (Substrate)
Substrates
Commentary Substrates
Literature (Substrates)
Organism
Products
Commentary (Products)
Literature (Products)
Organism (Products)
Reversibility
Substrate Product ID
fumarate + menaquinol
-
674634
Escherichia coli
succinate + menaquinone
-
-
-
r
additional information
enzyme operates with both natural quinones, ubiquinone and menaquinone, at a single quinone binding site. Residue Lys228 in subunit FrdB provides a strong hydrogen bond to menaquinone and is essential for reactions with both quinone types. There is similar hydrogen bonding of the C1 carbonyl of both MQ and UQ, whereas there is different hydrogen bonding for their C4 carbonyls
674634
Escherichia coli
?
-
-
-
-
succinate + menaquinone
-
674634
Escherichia coli
fumarate + menaquinol
-
-
-
r
Synonyms
Synonyms
Commentary
Organism
quinol-fumarate reductase
-
Escherichia coli
Turnover Number [1/s]
Turnover Number Minimum [1/s]
Turnover Number Maximum [1/s]
Substrate
Commentary
Organism
Structure
0.3
-
fumarate
mutant K228R, cosubstrate menaquinone, pH 7.0, 30°C
Escherichia coli
0.3
-
succinate
mutant E49L, cosubstrate menaquinone, pH 7.9, 30°C
Escherichia coli
0.4
-
succinate
mutant E49F, cosubstrate menaquinone, pH 7.9, 30°C
Escherichia coli
2.3
-
fumarate
mutant E49F, cosubstrate menaquinone, pH 7.0, 30°C
Escherichia coli
5
-
fumarate
mutant E49L, cosubstrate menaquinone, pH 7.0, 30°C
Escherichia coli
15
-
succinate
wild-type, cosubstrate menaquinone, pH 7.9, 30°C
Escherichia coli
230
-
fumarate
wild-type, cosubstrate menaquinone, pH 7.0, 30°C
Escherichia coli
Ki Value [mM]
Ki Value [mM]
Ki Value maximum [mM]
Inhibitor
Commentary
Organism
Structure
0.00006
-
2-n-heptyl-4-hydroxyquinoline-N-oxide
mutant E29L, pH 7.9, 30°C
Escherichia coli
0.0002
-
2-n-heptyl-4-hydroxyquinoline-N-oxide
wild-type, pH 7.0, 30°C
Escherichia coli
Engineering (protein specific)
Protein Variants
Commentary
Organism
E29F
mutation in subunit FrdC, dramatic decrease in enzymatic reactions with menaqunione. Elimination of the negative charge in E29 mutant enzymes results in significantly increased stabilization of both ubiquinone and menaquinone semiquinones
Escherichia coli
E29L
mutation in subunit FrdC, dramatic decrease in enzymatic reactions with menaqunione. Elimination of the negative charge in E29 mutant enzymes results in significantly increased stabilization of both ubiquinone and menaquinone semiquinones
Escherichia coli
K228L
mutation in subunit FrdB. Residue K228 provides a strong hydrogen bond to menaquinone and is essential for reactions with both ubiquinone and menaquinone
Escherichia coli
K228R
mutation in subunit FrdB. Residue K228 provides a strong hydrogen bond to menaquinone and is essential for reactions with both ubiquinone and menaquinone
Escherichia coli
Inhibitors (protein specific)
Inhibitors
Commentary
Organism
Structure
2-n-heptyl-4-hydroxyquinoline-N-oxide
-
Escherichia coli
Ki Value [mM] (protein specific)
Ki Value [mM]
Ki Value maximum [mM]
Inhibitor
Commentary
Organism
Structure
0.00006
-
2-n-heptyl-4-hydroxyquinoline-N-oxide
mutant E29L, pH 7.9, 30°C
Escherichia coli
0.0002
-
2-n-heptyl-4-hydroxyquinoline-N-oxide
wild-type, pH 7.0, 30°C
Escherichia coli
KM Value [mM] (protein specific)
KM Value [mM]
KM Value Maximum [mM]
Substrate
Commentary
Organism
Structure
0.0018
-
menaquinone
mutant E29L, pH 7.0, 30°C
Escherichia coli
0.004
-
menaquinone
wild-type, pH 7.0, 30°C
Escherichia coli
Substrates and Products (Substrate) (protein specific)
Substrates
Commentary Substrates
Literature (Substrates)
Organism
Products
Commentary (Products)
Literature (Products)
Organism (Products)
Reversibility
ID
fumarate + menaquinol
-
674634
Escherichia coli
succinate + menaquinone
-
-
-
r
additional information
enzyme operates with both natural quinones, ubiquinone and menaquinone, at a single quinone binding site. Residue Lys228 in subunit FrdB provides a strong hydrogen bond to menaquinone and is essential for reactions with both quinone types. There is similar hydrogen bonding of the C1 carbonyl of both MQ and UQ, whereas there is different hydrogen bonding for their C4 carbonyls
674634
Escherichia coli
?
-
-
-
-
succinate + menaquinone
-
674634
Escherichia coli
fumarate + menaquinol
-
-
-
r
Turnover Number [1/s] (protein specific)
Turnover Number Minimum [1/s]
Turnover Number Maximum [1/s]
Substrate
Commentary
Organism
Structure
0.3
-
fumarate
mutant K228R, cosubstrate menaquinone, pH 7.0, 30°C
Escherichia coli
0.3
-
succinate
mutant E49L, cosubstrate menaquinone, pH 7.9, 30°C
Escherichia coli
0.4
-
succinate
mutant E49F, cosubstrate menaquinone, pH 7.9, 30°C
Escherichia coli
2.3
-
fumarate
mutant E49F, cosubstrate menaquinone, pH 7.0, 30°C
Escherichia coli
5
-
fumarate
mutant E49L, cosubstrate menaquinone, pH 7.0, 30°C
Escherichia coli
15
-
succinate
wild-type, cosubstrate menaquinone, pH 7.9, 30°C
Escherichia coli
230
-
fumarate
wild-type, cosubstrate menaquinone, pH 7.0, 30°C
Escherichia coli
Other publictions for EC 1.3.5.4
No.
1st author
Pub Med
title
organims
journal
volume
pages
year
Activating Compound
Application
Cloned(Commentary)
Crystallization (Commentary)
Engineering
General Stability
Inhibitors
KM Value [mM]
Localization
Metals/Ions
Molecular Weight [Da]
Natural Substrates/ Products (Substrates)
Organic Solvent Stability
Organism
Oxidation Stability
Posttranslational Modification
Purification (Commentary)
Reaction
Renatured (Commentary)
Source Tissue
Specific Activity [micromol/min/mg]
Storage Stability
Substrates and Products (Substrate)
Subunits
Synonyms
Temperature Optimum [°C]
Temperature Range [°C]
Temperature Stability [°C]
Turnover Number [1/s]
pH Optimum
pH Range
pH Stability
Cofactor
Ki Value [mM]
pI Value
IC50 Value
Activating Compound (protein specific)
Application (protein specific)
Cloned(Commentary) (protein specific)
Cofactor (protein specific)
Crystallization (Commentary) (protein specific)
Engineering (protein specific)
General Stability (protein specific)
IC50 Value (protein specific)
Inhibitors (protein specific)
Ki Value [mM] (protein specific)
KM Value [mM] (protein specific)
Localization (protein specific)
Metals/Ions (protein specific)
Molecular Weight [Da] (protein specific)
Natural Substrates/ Products (Substrates) (protein specific)
Organic Solvent Stability (protein specific)
Oxidation Stability (protein specific)
Posttranslational Modification (protein specific)
Purification (Commentary) (protein specific)
Renatured (Commentary) (protein specific)
Source Tissue (protein specific)
Specific Activity [micromol/min/mg] (protein specific)
Storage Stability (protein specific)
Substrates and Products (Substrate) (protein specific)
Subunits (protein specific)
Temperature Optimum [°C] (protein specific)
Temperature Range [°C] (protein specific)
Temperature Stability [°C] (protein specific)
Turnover Number [1/s] (protein specific)
pH Optimum (protein specific)
pH Range (protein specific)
pH Stability (protein specific)
pI Value (protein specific)
Expression
General Information
General Information (protein specific)
Expression (protein specific)
KCat/KM [mM/s]
KCat/KM [mM/s] (protein specific)
743255
Kassem
The impairment of methylmenaq ...
Campylobacter jejuni subsp. jejuni
MicrobiologyOpen
3
168-181
2014
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
742846
Singh
Plasticity of the quinone-bin ...
Escherichia coli
J. Biol. Chem.
288
24293-24301
2013
-
-
1
1
9
-
-
15
-
-
-
-
-
1
-
-
-
-
-
-
-
-
3
-
3
-
-
-
33
-
-
-
2
-
-
-
-
-
1
2
1
9
-
-
-
-
15
-
-
-
-
-
-
-
-
-
-
-
-
3
-
-
-
-
33
-
-
-
-
-
-
-
-
-
-
743059
Nasiri
Design, synthesis, and biolog ...
Wolinella succinogenes, Wolinella succinogenes DSM 1740
J. Med. Chem.
56
9530-9541
2013
-
-
-
-
-
-
2
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
4
-
2
-
-
-
-
-
-
-
-
-
-
4
-
-
-
-
-
-
-
4
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
4
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
724561
Herzog
Hydrogen-bonded networks along ...
Campylobacter jejuni, Helicobacter pylori, Wolinella succinogenes
Biophys. J.
103
1305-1314
2012
-
-
-
-
3
-
-
-
3
-
-
-
-
3
-
-
-
-
-
-
-
-
2
3
6
-
-
-
-
-
-
-
6
-
-
-
-
-
-
6
-
3
-
-
-
-
-
3
-
-
-
-
-
-
-
-
-
-
-
2
3
-
-
-
-
-
-
-
-
-
3
3
-
-
-
725316
Shimizu
Crystal structure of mitochond ...
Ascaris suum
J. Biochem.
151
589-592
2012
-
-
-
1
-
-
-
-
1
1
-
1
-
1
-
-
1
-
-
1
-
-
2
2
2
-
-
-
-
-
-
-
3
-
-
-
-
-
-
3
1
-
-
-
-
-
-
1
1
-
1
-
-
-
1
-
1
-
-
2
2
-
-
-
-
-
-
-
-
-
2
2
-
-
-
700278
Juhnke
Production, characterization a ...
Campylobacter jejuni, Wolinella succinogenes
Mol. Microbiol.
71
1088-1101
2009
-
-
-
-
1
-
-
-
2
-
-
1
-
5
-
-
1
-
-
-
-
-
2
-
9
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
1
-
-
-
-
-
2
-
-
1
-
-
-
1
-
-
-
-
2
-
-
-
-
-
-
-
-
-
1
1
1
1
-
-
707545
Xin
Purification, characterization ...
Chloroflexus aurantiacus
Biochim. Biophys. Acta
1787
86-96
2009
-
-
-
1
-
-
1
-
1
1
4
-
-
1
-
-
1
-
-
-
-
-
1
1
2
-
-
-
-
-
-
-
3
-
-
-
-
-
-
3
1
-
-
-
1
-
-
1
1
4
-
-
-
-
1
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
707949
Garcia
The succinate:menaquinone redu ...
Bacillus cereus
Can. J. Microbiol.
54
456-466
2008
-
-
-
-
-
-
2
2
1
-
-
-
-
3
-
-
-
1
-
-
1
-
2
1
2
1
-
-
1
1
-
-
2
1
-
-
-
-
-
2
-
-
-
-
2
1
2
1
-
-
-
-
-
-
-
-
-
1
-
2
1
1
-
-
1
1
-
-
-
-
-
-
-
-
-
674532
Maklashina
Fumarate reductase and succina ...
Escherichia coli
J. Biol. Chem.
281
11357-11365
2006
-
-
-
1
3
-
2
5
-
-
-
-
-
1
-
-
1
-
-
-
-
-
2
-
-
-
-
-
6
-
-
-
-
6
-
-
-
-
-
-
1
3
-
-
2
6
5
-
-
-
-
-
-
-
1
-
-
-
-
2
-
-
-
-
6
-
-
-
-
-
-
-
-
5
5
674634
Maklashina
Differences in protonation of ...
Escherichia coli
J. Biol. Chem.
281
26655-26664
2006
-
-
-
-
4
-
1
2
-
-
-
-
-
1
-
-
-
-
-
-
-
-
3
-
1
-
-
-
7
-
-
-
-
2
-
-
-
-
-
-
-
4
-
-
1
2
2
-
-
-
-
-
-
-
-
-
-
-
-
3
-
-
-
-
7
-
-
-
-
-
-
-
-
-
-
707470
Madej
Experimental evidence for prot ...
Bacillus licheniformis
Biochemistry
45
15049-15055
2006
-
-
-
-
-
-
-
-
1
-
-
-
-
5
-
-
1
-
-
-
-
-
3
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
-
-
-
3
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
671694
Fernandes
Quinone reduction by Rhodother ...
Rhodothermus marinus
Biochem. Biophys. Res. Commun.
330
565-570
2005
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
1
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
654820
Cecchini
Succinate dehydrogenase and fu ...
Escherichia coli
Biochim. Biophys. Acta
1553
140-157
2002
-
-
1
1
1
-
2
3
1
1
-
-
-
2
-
-
-
-
-
-
-
-
1
1
2
1
-
-
3
1
1
-
1
4
-
-
-
-
1
1
1
1
-
-
2
4
3
1
1
-
-
-
-
-
-
-
-
-
-
1
1
1
-
-
3
1
1
-
-
1
1
1
1
-
-
708975
Iverson
Crystallographic studies of th ...
Escherichia coli
J. Biol. Chem.
277
16124-16130
2002
-
-
-
1
-
-
2
-
1
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
2
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
708368
Schnorpfeil
Generation of a proton potenti ...
Bacillus subtilis
Eur. J. Biochem.
268
3069-3074
2001
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
391149
Lancaster
Succinate:quinone oxidoreducta ...
Escherichia coli, Wolinella succinogenes
Biochim. Biophys. Acta
1459
422-431
2000
-
-
-
1
-
-
-
-
1
1
-
1
-
2
-
-
-
-
-
-
-
-
2
-
6
-
-
-
-
-
-
-
3
-
-
-
-
-
-
3
1
-
-
-
-
-
-
1
1
-
1
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
2
2
-
-
-
708909
Maklashina
Anaerobic expression of Escher ...
Escherichia coli
J. Bacteriol.
180
5989-5996
1998
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
708966
Schroder
Identification of active site ...
Escherichia coli
J. Biol. Chem.
266
13572-13579
1991
-
-
-
-
4
-
-
-
-
-
-
-
-
4
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
4
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
391090
Körtner
Wolinella succinogenes fumarat ...
Wolinella succinogenes
Mol. Microbiol.
4
855-860
1990
-
-
1
-
-
-
-
-
-
-
-
1
-
1
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
391089
Lauterbach
Cloning and expression of the ...
Wolinella succinogenes
Eur. J. Biochem.
166
447-452
1987
-
-
1
-
-
-
-
-
-
1
-
1
-
1
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
1
2
-
-
-
-
-
-
-
-
1
-
1
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
391106
Weiner
A mutant of Escherichia coli f ...
Escherichia coli
Proc. Natl. Acad. Sci. USA
83
2056-2060
1986
-
-
1
-
1
-
1
-
-
-
4
-
-
1
-
-
-
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
1
1
-
1
-
-
1
-
-
-
-
4
-
-
-
-
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
391147
Gottfried
Reconstitution of a functional ...
Wolinella succinogenes
Methods Enzymol.
126
387-399
1986
-
-
-
-
-
-
-
-
-
1
4
-
-
1
-
-
1
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
1
4
-
-
-
-
1
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
710440
Cecchini
Oxidation of reduced menaquino ...
Escherichia coli
Proc. Natl. Acad. Sci. USA
83
8898-8902
1986
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
391094
Unden
-
Redox potentials and kinetic p ...
Wolinella succinogenes
Biochim. Biophys. Acta
767
460-469
1984
-
-
-
-
-
-
-
-
1
1
3
-
-
1
-
-
-
-
-
-
-
-
1
1
-
-
-
-
2
-
-
-
3
-
-
-
-
-
-
3
-
-
-
-
-
-
-
1
1
3
-
-
-
-
-
-
-
-
-
1
1
-
-
-
2
-
-
-
-
-
-
-
-
-
-
391084
Unden
The function of the subunits o ...
Wolinella succinogenes
Eur. J. Biochem.
120
577-584
1981
-
-
-
-
-
-
-
-
-
-
3
2
-
1
-
-
-
-
1
-
-
-
4
1
-
-
-
-
1
-
-
-
2
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
3
2
-
-
-
-
1
-
-
-
4
1
-
-
-
1
-
-
-
-
-
-
-
-
-
-
391092
Unden
Isolation and functional aspec ...
Wolinella succinogenes
Biochim. Biophys. Acta
591
275-288
1980
-
-
-
-
-
-
-
1
1
1
6
-
-
1
-
-
1
-
-
-
1
-
2
2
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
3
-
-
-
-
-
-
1
1
1
6
-
-
-
-
1
-
-
1
-
2
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
391116
Kröger
The orientation of the substra ...
Wolinella succinogenes
Biochim. Biophys. Acta
589
118-136
1980
-
-
-
-
-
-
1
-
1
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
707291
Van der Beek
Fumarate reduction in Proteus ...
Proteus mirabilis
Arch. Microbiol.
110
195-206
1976
-
-
-
-
-
-
2
-
1
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
2
-
-
708369
Kroeger
-
The function of menaquinone, c ...
Wolinella succinogenes
Eur. J. Biochem.
69
487-495
1976
-
-
-
-
-
-
1
-
2
1
-
-
-
1
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
2
-
-
-
-
1
-
-
2
1
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-