BRENDA - Enzyme Database show
show all sequences of 1.3.7.12

Breakdown of chlorophyll: A fluorescent chlorophyll catabolite from sweet pepper (Capsicum annuum)

Muehlecker, W.; Kraeutler, B.; Moser, D.; Matile, P.; Hoertensteiner, S.; Helv. Chim. Acta 83, 278-286 (2000)
No PubMed abstract available

Data extracted from this reference:

Localization
Localization
Commentary
Organism
GeneOntology No.
Textmining
chromoplast
-
Capsicum annuum
9509
-
Metals/Ions
Metals/Ions
Commentary
Organism
Structure
iron sulfur cluster
-
Brassica napus
iron sulfur cluster
-
Capsicum annuum
Natural Substrates/ Products (Substrates)
Natural Substrates
Organism
Commentary (Nat. Sub.)
Natural Products
Commentary (Nat. Pro.)
Organism (Nat. Pro.)
Reversibility
red chlorophyll catabolite + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+
Capsicum annuum
-
primary fluorescent chlorophyll catabolite + 2 oxidized ferredoxin [iron-sulfur] cluster
-
-
?
red chlorophyll catabolite + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+
Brassica napus
-
primary fluorescent chlorophyll catabolite + 2 oxidized ferredoxin [iron-sulfur] cluster
-
-
?
Organism
Organism
Primary Accession No. (UniProt)
Commentary
Textmining
Brassica napus
Q1ELT7
-
-
Capsicum annuum
V5K6J8
-
-
Source Tissue
Source Tissue
Commentary
Organism
Textmining
cotyledon
senescent, degreened
Brassica napus
-
fruit
-
Capsicum annuum
-
Substrates and Products (Substrate)
Substrates
Commentary Substrates
Literature (Substrates)
Organism
Products
Commentary (Products)
Literature (Products)
Organism (Products)
Reversibility
red chlorophyll catabolite + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+
-
736215
Capsicum annuum
primary fluorescent chlorophyll catabolite + 2 oxidized ferredoxin [iron-sulfur] cluster
-
-
-
?
red chlorophyll catabolite + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+
-
736215
Brassica napus
primary fluorescent chlorophyll catabolite + 2 oxidized ferredoxin [iron-sulfur] cluster
-
-
-
?
red chlorophyll catabolite + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+
-
736215
Capsicum annuum
primary fluorescent chlorophyll catabolite + 2 oxidized ferredoxin [iron-sulfur] cluster
i.e. Ca-pFCC-2, or 1-epi-FCC, or (1zeta,132R,17S,18S)-31,32-didehydro-1,4,5,10,17,18,20,22-octahydro-132-(methoxycarbonyl)-4,5-dioxo-4,5-secophytoporphyrin
-
-
?
pH Optimum
pH Optimum Minimum
pH Optimum Maximum
Commentary
Organism
7
-
assay at
Capsicum annuum
Cofactor
Cofactor
Commentary
Organism
Structure
Ferredoxin
-
Capsicum annuum
Ferredoxin
-
Brassica napus
Cofactor (protein specific)
Cofactor
Commentary
Organism
Structure
Ferredoxin
-
Capsicum annuum
Ferredoxin
-
Brassica napus
Localization (protein specific)
Localization
Commentary
Organism
GeneOntology No.
Textmining
chromoplast
-
Capsicum annuum
9509
-
Metals/Ions (protein specific)
Metals/Ions
Commentary
Organism
Structure
iron sulfur cluster
-
Brassica napus
iron sulfur cluster
-
Capsicum annuum
Natural Substrates/ Products (Substrates) (protein specific)
Natural Substrates
Organism
Commentary (Nat. Sub.)
Natural Products
Commentary (Nat. Pro.)
Organism (Nat. Pro.)
Reversibility
red chlorophyll catabolite + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+
Capsicum annuum
-
primary fluorescent chlorophyll catabolite + 2 oxidized ferredoxin [iron-sulfur] cluster
-
-
?
red chlorophyll catabolite + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+
Brassica napus
-
primary fluorescent chlorophyll catabolite + 2 oxidized ferredoxin [iron-sulfur] cluster
-
-
?
Source Tissue (protein specific)
Source Tissue
Commentary
Organism
Textmining
cotyledon
senescent, degreened
Brassica napus
-
fruit
-
Capsicum annuum
-
Substrates and Products (Substrate) (protein specific)
Substrates
Commentary Substrates
Literature (Substrates)
Organism
Products
Commentary (Products)
Literature (Products)
Organism (Products)
Reversibility
red chlorophyll catabolite + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+
-
736215
Capsicum annuum
primary fluorescent chlorophyll catabolite + 2 oxidized ferredoxin [iron-sulfur] cluster
-
-
-
?
red chlorophyll catabolite + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+
-
736215
Brassica napus
primary fluorescent chlorophyll catabolite + 2 oxidized ferredoxin [iron-sulfur] cluster
-
-
-
?
red chlorophyll catabolite + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+
-
736215
Capsicum annuum
primary fluorescent chlorophyll catabolite + 2 oxidized ferredoxin [iron-sulfur] cluster
i.e. Ca-pFCC-2, or 1-epi-FCC, or (1zeta,132R,17S,18S)-31,32-didehydro-1,4,5,10,17,18,20,22-octahydro-132-(methoxycarbonyl)-4,5-dioxo-4,5-secophytoporphyrin
-
-
?
pH Optimum (protein specific)
pH Optimum Minimum
pH Optimum Maximum
Commentary
Organism
7
-
assay at
Capsicum annuum
General Information
General Information
Commentary
Organism
evolution
red chlorophyll catabolite reductases appear to represent a phylogenetically early addition to the chlorophyll catabolic pathway. Two types of red chlorophyll-catabolite reductases (RCCR), named RCCR-type 1 and RCCR-type 2, appear to have evolved in higher plants. Chlorophyll catabolism in higher plants differs remarkably from that in the green algae by the formation of FCCs and NCCs
Brassica napus
evolution
red chlorophyll catabolite reductases appear to represent a phylogenetically early addition to the chlorophyll catabolic pathway. Two types of red chlorophyll-catabolite reductases (RCCR), named RCCR-type 1 and RCCR-type 2, appear to have evolved in higher plants. Chlorophyll catabolism in higher plants differs remarkably from that in the green alga by the formation of FCCs and NCCs
Capsicum annuum
metabolism
in chlorophyll breakdown, the conversion of pheophorbide a to primary fluorescent chlorophyll catabolites is catalyzed by the joint action of the two enzymes PaO, a membrane-bound enzyme, and the soluble stroma enzyme RCCR. The former cleaves the porphyrin macrocycle oxidatively and produces a bound form of the intermediary catabolite (RCC), which seems to be reduced stereoselectively on the C20=C1 bond by the action of the reductase
Brassica napus
metabolism
in chlorophyll breakdown, the conversion of pheophorbide a to primary fluorescent chlorophyll catabolites is catalyzed by the joint action of the two enzymes PaO, a membrane-bound enzyme, and the soluble stroma enzyme RCCR. The former cleaves the porphyrin macrocycle oxidatively and produces a bound form of the intermediary catabolite (RCC), which seems to be reduced stereoselectively on the C20=C1 bond by the action of the reductase
Capsicum annuum
additional information
the primary fluorescent chlorophyll catabolite Ca-FCC-2 from sweet pepper, Capsicum annuum, chromoplasts has similar optical properties, but is slightly less polar than the primary FCC from senescent cotyledons of oilseed rape, Brassica napus, determination of structure and constitution by fast-atom-bombardment mass spectra and homo- and heteronuclear magnetic resonance experiments. Two-dimensional homonuclear spectra of Ca-FCC-2 reveals it to differ from pFCC by the configuration at the methine atom C1, whose configuration results from the action of red chlorophyll catabolite reductase, RCCR. Structure analysis, overview
Brassica napus
additional information
the primary fluorescent chlorophyll catabolite Ca-FCC-2 from sweet pepper, Capsicum annuum, chromoplasts has similar optical properties, but is slightly less polar than the primary FCC from senescent cotyledons of oilseed rape, Brassica napus, determination of structure and constitution by fast-atom-bombardment mass spectra and homo- and heteronuclear magnetic resonance experiments. Two-dimensional homonuclear spectra of Ca-FCC-2 reveals it to differ from pFCC by the configuration at the methine atom C1, whose configuration results from the action of red chlorophyll catabolite reductase, RCCR. Structure analysis, overview
Capsicum annuum
physiological function
a major goal of chlorophyll breakdown merely concerns the detoxification of the green plant pigment which may be destructive otherwise as a photosensitizer to the regulated processes that occur during senescence
Brassica napus
physiological function
a major goal of chlorophyll breakdown merely concerns the detoxification of the green plant pigment which may be destructive otherwise as a photosensitizer to the regulated processes that occur during senescence
Capsicum annuum
General Information (protein specific)
General Information
Commentary
Organism
evolution
red chlorophyll catabolite reductases appear to represent a phylogenetically early addition to the chlorophyll catabolic pathway. Two types of red chlorophyll-catabolite reductases (RCCR), named RCCR-type 1 and RCCR-type 2, appear to have evolved in higher plants. Chlorophyll catabolism in higher plants differs remarkably from that in the green algae by the formation of FCCs and NCCs
Brassica napus
evolution
red chlorophyll catabolite reductases appear to represent a phylogenetically early addition to the chlorophyll catabolic pathway. Two types of red chlorophyll-catabolite reductases (RCCR), named RCCR-type 1 and RCCR-type 2, appear to have evolved in higher plants. Chlorophyll catabolism in higher plants differs remarkably from that in the green alga by the formation of FCCs and NCCs
Capsicum annuum
metabolism
in chlorophyll breakdown, the conversion of pheophorbide a to primary fluorescent chlorophyll catabolites is catalyzed by the joint action of the two enzymes PaO, a membrane-bound enzyme, and the soluble stroma enzyme RCCR. The former cleaves the porphyrin macrocycle oxidatively and produces a bound form of the intermediary catabolite (RCC), which seems to be reduced stereoselectively on the C20=C1 bond by the action of the reductase
Brassica napus
metabolism
in chlorophyll breakdown, the conversion of pheophorbide a to primary fluorescent chlorophyll catabolites is catalyzed by the joint action of the two enzymes PaO, a membrane-bound enzyme, and the soluble stroma enzyme RCCR. The former cleaves the porphyrin macrocycle oxidatively and produces a bound form of the intermediary catabolite (RCC), which seems to be reduced stereoselectively on the C20=C1 bond by the action of the reductase
Capsicum annuum
additional information
the primary fluorescent chlorophyll catabolite Ca-FCC-2 from sweet pepper, Capsicum annuum, chromoplasts has similar optical properties, but is slightly less polar than the primary FCC from senescent cotyledons of oilseed rape, Brassica napus, determination of structure and constitution by fast-atom-bombardment mass spectra and homo- and heteronuclear magnetic resonance experiments. Two-dimensional homonuclear spectra of Ca-FCC-2 reveals it to differ from pFCC by the configuration at the methine atom C1, whose configuration results from the action of red chlorophyll catabolite reductase, RCCR. Structure analysis, overview
Brassica napus
additional information
the primary fluorescent chlorophyll catabolite Ca-FCC-2 from sweet pepper, Capsicum annuum, chromoplasts has similar optical properties, but is slightly less polar than the primary FCC from senescent cotyledons of oilseed rape, Brassica napus, determination of structure and constitution by fast-atom-bombardment mass spectra and homo- and heteronuclear magnetic resonance experiments. Two-dimensional homonuclear spectra of Ca-FCC-2 reveals it to differ from pFCC by the configuration at the methine atom C1, whose configuration results from the action of red chlorophyll catabolite reductase, RCCR. Structure analysis, overview
Capsicum annuum
physiological function
a major goal of chlorophyll breakdown merely concerns the detoxification of the green plant pigment which may be destructive otherwise as a photosensitizer to the regulated processes that occur during senescence
Brassica napus
physiological function
a major goal of chlorophyll breakdown merely concerns the detoxification of the green plant pigment which may be destructive otherwise as a photosensitizer to the regulated processes that occur during senescence
Capsicum annuum
Other publictions for EC 1.3.7.12
No.
1st author
Pub Med
title
organims
journal
volume
pages
year
Activating Compound
Application
Cloned(Commentary)
Crystallization (Commentary)
Engineering
General Stability
Inhibitors
KM Value [mM]
Localization
Metals/Ions
Molecular Weight [Da]
Natural Substrates/ Products (Substrates)
Organic Solvent Stability
Organism
Oxidation Stability
Posttranslational Modification
Purification (Commentary)
Reaction
Renatured (Commentary)
Source Tissue
Specific Activity [micromol/min/mg]
Storage Stability
Substrates and Products (Substrate)
Subunits
Temperature Optimum [°C]
Temperature Range [°C]
Temperature Stability [°C]
Turnover Number [1/s]
pH Optimum
pH Range
pH Stability
Cofactor
Ki Value [mM]
pI Value
IC50 Value
Activating Compound (protein specific)
Application (protein specific)
Cloned(Commentary) (protein specific)
Cofactor (protein specific)
Crystallization (Commentary) (protein specific)
Engineering (protein specific)
General Stability (protein specific)
IC50 Value (protein specific)
Inhibitors (protein specific)
Ki Value [mM] (protein specific)
KM Value [mM] (protein specific)
Localization (protein specific)
Metals/Ions (protein specific)
Molecular Weight [Da] (protein specific)
Natural Substrates/ Products (Substrates) (protein specific)
Organic Solvent Stability (protein specific)
Oxidation Stability (protein specific)
Posttranslational Modification (protein specific)
Purification (Commentary) (protein specific)
Renatured (Commentary) (protein specific)
Source Tissue (protein specific)
Specific Activity [micromol/min/mg] (protein specific)
Storage Stability (protein specific)
Substrates and Products (Substrate) (protein specific)
Subunits (protein specific)
Temperature Optimum [°C] (protein specific)
Temperature Range [°C] (protein specific)
Temperature Stability [°C] (protein specific)
Turnover Number [1/s] (protein specific)
pH Optimum (protein specific)
pH Range (protein specific)
pH Stability (protein specific)
pI Value (protein specific)
Expression
General Information
General Information (protein specific)
Expression (protein specific)
KCat/KM [mM/s]
KCat/KM [mM/s] (protein specific)
736190
Xiao
Cloning and expression analysi ...
Capsicum annuum
Genet. Mol. Res.
14
368-379
2015
-
-
1
-
-
-
-
-
2
-
-
-
-
3
-
-
-
-
-
5
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
1
1
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
5
-
-
-
-
-
-
-
-
-
-
-
-
1
3
3
1
-
-
726323
Liu
Nitric oxide deficiency accele ...
Arabidopsis thaliana
PLoS ONE
8
e56345
2013
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
-
-
1
-
-
1
-
-
726877
Sakuraba
7-Hydroxymethyl chlorophyll a ...
Arabidopsis thaliana
Biochem. Biophys. Res. Commun.
430
32-37
2013
-
-
1
-
-
-
-
-
-
-
-
1
-
1
-
-
-
-
-
2
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
2
-
-
1
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
726165
Sakuraba
STAY-GREEN and chlorophyll cat ...
Arabidopsis thaliana
Plant Cell
24
507-518
2012
-
-
-
-
-
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
1
-
-
1
-
-
736688
Zhang
Correlation of leaf senescence ...
Brassica rapa
J. Plant Physiol.
168
2081-2087
2011
-
-
1
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
2
1
1
2
-
-
712769
Sugishima
Crystal structures of the subs ...
Arabidopsis thaliana
J. Mol. Biol.
402
879-891
2010
-
-
1
1
2
-
-
-
1
-
-
2
-
2
-
-
1
-
-
1
-
-
4
2
-
-
-
-
-
-
-
3
-
-
-
-
-
1
3
1
2
-
-
-
-
-
1
-
-
2
-
-
-
1
-
1
-
-
4
2
-
-
-
-
-
-
-
-
-
3
3
-
-
-
699585
Sugishima
Crystal structure of red chlor ...
Arabidopsis thaliana
J. Mol. Biol.
389
376-387
2009
1
-
1
1
-
-
-
-
3
-
2
2
-
2
-
-
1
-
-
1
-
-
3
2
-
-
-
-
-
-
-
1
-
-
-
1
-
1
1
1
-
-
-
-
-
-
3
-
2
2
-
-
-
1
-
1
-
-
3
2
-
-
-
-
-
-
-
-
-
3
3
-
-
-
700695
Ougham
The control of chlorophyll cat ...
Arabidopsis thaliana
Plant Biol.
10 Suppl 1
4-14
2008
-
-
-
-
-
-
-
-
2
-
-
1
-
4
-
-
-
-
-
1
1
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
1
-
-
-
-
-
1
1
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
676436
Pruzinska
In vivo participation of red c ...
Arabidopsis thaliana
Plant Cell
19
369-387
2007
-
-
-
-
2
-
-
-
1
-
-
1
-
3
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
1
-
-
1
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
671354
Hörtensteiner
Chlorophyll degradation during ...
Arabidopsis sp., Hordeum vulgare, Solanum lycopersicum, Spinacia oleracea
Annu. Rev. Plant Biol.
57
55-77
2006
-
-
3
-
3
-
-
-
2
-
-
3
-
5
-
-
2
-
-
1
-
-
4
-
-
-
-
-
-
-
-
1
-
-
-
-
-
3
1
-
3
-
-
-
-
-
2
-
-
3
-
-
-
2
-
1
-
-
4
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
735438
Hoertensteiner
Chlorophyll degradation during ...
Arabidopsis thaliana
Annu. Plant Biol.
57
55-77
2006
-
-
1
-
1
-
-
-
2
-
2
1
-
1
-
-
-
-
-
2
-
-
2
1
-
-
-
-
-
-
-
1
-
-
-
-
-
1
1
-
1
-
-
-
-
-
2
-
2
1
-
-
-
-
-
2
-
-
2
1
-
-
-
-
-
-
-
-
-
3
3
-
-
-
676587
Pruzinska
Chlorophyll breakdown in senes ...
Arabidopsis thaliana
Plant Physiol.
139
52-63
2005
-
-
-
-
-
-
-
-
-
-
-
1
-
3
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
736960
Roca
Analysis of the chlorophyll ca ...
Lolium temulentum
Phytochemistry
65
1231-1238
2004
-
-
-
-
1
-
-
-
2
-
-
1
-
1
-
-
-
-
-
1
-
-
1
-
1
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
1
-
-
-
-
-
2
-
-
1
-
-
-
-
-
1
-
-
1
-
1
-
-
-
-
-
-
-
-
1
1
-
-
-
676913
Mach
The Arabidopsis-accelerated ce ...
Arabidopsis sp.
Proc. Natl. Acad. Sci. USA
98
771-776
2001
-
1
1
-
-
-
-
-
2
-
-
1
-
5
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
2
-
-
1
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
676395
Hörtensteiner
-
Evolution of chlorophyll degra ...
Angiopteris, Auxenochlorella protothecoides, Carex, Cleome graveolens, Cycas sp., Equisetum sp., Euptelea, Ginkgo biloba, Hordeum vulgare, Metasequoia, Picea, Psilotum, Selaginella sp., Solanum lycopersicum, Spinacia oleracea, Taxus baccata, Taxus sp., Tropaeolum majus
Plant Biol.
2
63-67
2000
-
-
-
-
2
-
3
-
27
-
-
15
-
18
-
-
-
-
-
18
-
-
38
-
1
-
-
-
1
-
-
15
-
-
-
-
-
-
15
-
2
-
-
3
-
-
27
-
-
15
-
-
-
-
-
18
-
-
38
-
1
-
-
-
1
-
-
-
-
15
15
-
-
-
676490
Wüthrich
Molecular cloning, functional ...
Arabidopsis thaliana, Hordeum vulgare
Plant J.
21
189-198
2000
-
-
2
-
-
-
1
-
1
-
2
2
-
5
-
1
2
-
-
3
-
-
2
1
-
-
-
-
-
-
-
1
-
-
-
-
-
2
1
-
-
-
-
1
-
-
1
-
2
2
-
-
1
2
-
3
-
-
2
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
736215
Muehlecker
-
Breakdown of chlorophyll: A fl ...
Brassica napus, Capsicum annuum
Helv. Chim. Acta
83
278-286
2000
-
-
-
-
-
-
-
-
1
2
-
2
-
2
-
-
-
-
-
2
-
-
3
-
-
-
-
-
1
-
-
2
-
-
-
-
-
-
2
-
-
-
-
-
-
-
1
2
-
2
-
-
-
-
-
2
-
-
3
-
-
-
-
-
1
-
-
-
-
8
8
-
-
-
736949
Hoertensteiner
Chlorophyll breakdown in oilse ...
Arabidopsis thaliana, Brassica napus
Photosyn. Res.
64
137-146
2000
-
-
-
-
-
-
1
-
4
-
-
2
-
4
2
-
-
-
-
4
-
-
4
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
2
-
-
-
-
1
-
-
4
-
-
2
-
2
-
-
-
4
-
-
4
-
-
-
-
-
-
-
-
-
-
4
4
-
-
-
735913
Hoertensteiner
Chlorophyll breakdown in highe ...
Auxenochlorella protothecoides, Brassica napus, Capsicum annuum, Festuca pratensis, Hordeum vulgare, Parachlorella kessleri, Phaseolus vulgaris
Cell. Mol. Life Sci.
56
330-347
1999
-
-
-
-
-
-
5
-
6
14
-
9
-
9
5
-
1
7
-
5
-
-
16
-
-
-
-
-
-
-
-
7
-
-
-
-
-
-
7
-
-
-
-
5
-
-
6
14
-
9
-
5
-
1
-
5
-
-
16
-
-
-
-
-
-
-
-
-
-
17
17
-
-
-
674404
Hörtensteiner
The key step in chlorophyll br ...
Brassica napus
J. Biol. Chem.
273
15335-15339
1998
-
-
-
-
-
-
-
-
2
-
-
1
-
5
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
-
-
-
-
-
-
2
-
-
1
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
2
2
-
-
-
676564
Rodoni
Chlorophyll breakdown in senes ...
Brassica napus
Plant Physiol.
115
669-676
1997
-
-
-
-
-
-
-
-
1
-
-
1
-
1
-
-
-
-
-
2
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
-
-
-
-
-
-
1
-
-
1
-
-
-
-
-
2
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
676565
Rodoni
Partial purification and chara ...
Hordeum vulgare
Plant Physiol.
115
677-682
1997
-
-
-
-
-
-
1
1
1
-
-
1
-
5
-
-
1
-
-
2
-
-
2
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
2
-
-
-
-
1
-
1
1
-
-
1
-
-
-
1
-
2
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-