BRENDA - Enzyme Database
show all sequences of 1.8.4.10

The putative moss 3'-phosphoadenosine-5'-phosphosulfate reductase is a novel form of adenosine-5-phosphosulfate reductase without an iron-sulfur cluster

Kopriva, S.; Fritzemeier, K.; Wiedemann, G.; Reski, R.; J. Biol. Chem. 282, 22930-22938 (2007)

Data extracted from this reference:

Metals/Ions
Metals/Ions
Commentary
Organism
Structure
(NH4)2SO4
activates
Physcomitrella patens
KNO3
activates
Physcomitrella patens
Mg2+
activates
Physcomitrella patens
additional information
PpAPR-B does not contain the FeS cluster, which is believed to determine the substrate specificity of other APR enzymes from seed plants. The lack of the FeS cluster in PpAPR-B catalysis is connected with a lower turnover rate but higher stability of the protein
Physcomitrella patens
sulfate
activates
Physcomitrella patens
Natural Substrates/ Products (Substrates)
Natural Substrates
Organism
Commentary (Nat. Sub.)
Natural Products
Commentary (Nat. Pro.)
Organism (Nat. Pro.)
Reversibility
adenylyl sulfate + thioredoxin
Physcomitrella patens
sulfate assimilation pathway in Physcomitrella patens, overview
AMP + sulfite + thioredoxin disulfide
-
-
?
additional information
Physcomitrella patens
the moss Physcomitrella patens is unique among these organisms in possessing orthologs of both APR and PAPR, EC 1.8.4.8, genes
?
-
-
-
Organism
Organism
Primary Accession No. (UniProt)
Commentary
Textmining
Physcomitrella patens
-
-
-
Reaction
Reaction
Commentary
Organism
AMP + sulfite + thioredoxin disulfide = 5'-adenylyl sulfate + thioredoxin
the reaction catalyzed by APR can be divided into three steps. In the first step, APS binds to the protein, and a reductive transfer results in sulfite bound to the active-site cysteine in a stable reaction intermediate. In the second step, free sulfite is released by the action of free thioredoxin. In the third step, the thioredoxin is regenerated by reduction with thioredoxin reductase
Physcomitrella patens
Storage Stability
Storage Stability
Organism
-20C, 1 day, PpAPR-B retains 30% of its activity
Physcomitrella patens
4C, PpAPR-B, completely stable for 5 days
Physcomitrella patens
Substrates and Products (Substrate)
Substrates
Commentary Substrates
Literature (Substrates)
Organism
Products
Commentary (Products)
Literature (Products)
Organism (Products)
Reversibility
adenylyl sulfate + thioredoxin
sulfate assimilation pathway in Physcomitrella patens, overview
687585
Physcomitrella patens
AMP + sulfite + thioredoxin disulfide
-
-
-
?
adenylyl sulfate + thioredoxin
dependent on thioredoxin, APS is the preferred substrate, substrate binding structure, modelling, overview
687585
Physcomitrella patens
AMP + sulfite + thioredoxin disulfide
-
-
-
?
additional information
the moss Physcomitrella patens is unique among these organisms in possessing orthologs of both APR and PAPR, EC 1.8.4.8, genes
687585
Physcomitrella patens
?
-
-
-
-
Temperature Optimum [C]
Temperature Optimum [C]
Temperature Optimum Maximum [C]
Commentary
Organism
37
-
-
Physcomitrella patens
pH Optimum
pH Optimum Minimum
pH Optimum Maximum
Commentary
Organism
additional information
-
PpAPR-B activity in terms of APS reduction increases gradually and less markedly with increasing pH compared to PpAPR, EC 1.8.4.9
Physcomitrella patens
8
-
-
Physcomitrella patens
Cofactor
Cofactor
Commentary
Organism
Structure
additional information
PpAPR-B does not contain the FeS cluster, which is believed to determine the substrate specificity of other APR enzymes from seed plants. The lack of the FeS cluster in PpAPR-B catalysis is connected with a lower turnover rate but higher stability of the protein. No activity with glutathione or DTT
Physcomitrella patens
thioredoxin
-
Physcomitrella patens
Cofactor (protein specific)
Cofactor
Commentary
Organism
Structure
additional information
PpAPR-B does not contain the FeS cluster, which is believed to determine the substrate specificity of other APR enzymes from seed plants. The lack of the FeS cluster in PpAPR-B catalysis is connected with a lower turnover rate but higher stability of the protein. No activity with glutathione or DTT
Physcomitrella patens
thioredoxin
-
Physcomitrella patens
Metals/Ions (protein specific)
Metals/Ions
Commentary
Organism
Structure
(NH4)2SO4
activates
Physcomitrella patens
KNO3
activates
Physcomitrella patens
Mg2+
activates
Physcomitrella patens
additional information
PpAPR-B does not contain the FeS cluster, which is believed to determine the substrate specificity of other APR enzymes from seed plants. The lack of the FeS cluster in PpAPR-B catalysis is connected with a lower turnover rate but higher stability of the protein
Physcomitrella patens
sulfate
activates
Physcomitrella patens
Natural Substrates/ Products (Substrates) (protein specific)
Natural Substrates
Organism
Commentary (Nat. Sub.)
Natural Products
Commentary (Nat. Pro.)
Organism (Nat. Pro.)
Reversibility
adenylyl sulfate + thioredoxin
Physcomitrella patens
sulfate assimilation pathway in Physcomitrella patens, overview
AMP + sulfite + thioredoxin disulfide
-
-
?
additional information
Physcomitrella patens
the moss Physcomitrella patens is unique among these organisms in possessing orthologs of both APR and PAPR, EC 1.8.4.8, genes
?
-
-
-
Storage Stability (protein specific)
Storage Stability
Organism
-20C, 1 day, PpAPR-B retains 30% of its activity
Physcomitrella patens
4C, PpAPR-B, completely stable for 5 days
Physcomitrella patens
Substrates and Products (Substrate) (protein specific)
Substrates
Commentary Substrates
Literature (Substrates)
Organism
Products
Commentary (Products)
Literature (Products)
Organism (Products)
Reversibility
adenylyl sulfate + thioredoxin
sulfate assimilation pathway in Physcomitrella patens, overview
687585
Physcomitrella patens
AMP + sulfite + thioredoxin disulfide
-
-
-
?
adenylyl sulfate + thioredoxin
dependent on thioredoxin, APS is the preferred substrate, substrate binding structure, modelling, overview
687585
Physcomitrella patens
AMP + sulfite + thioredoxin disulfide
-
-
-
?
additional information
the moss Physcomitrella patens is unique among these organisms in possessing orthologs of both APR and PAPR, EC 1.8.4.8, genes
687585
Physcomitrella patens
?
-
-
-
-
Temperature Optimum [C] (protein specific)
Temperature Optimum [C]
Temperature Optimum Maximum [C]
Commentary
Organism
37
-
-
Physcomitrella patens
pH Optimum (protein specific)
pH Optimum Minimum
pH Optimum Maximum
Commentary
Organism
additional information
-
PpAPR-B activity in terms of APS reduction increases gradually and less markedly with increasing pH compared to PpAPR, EC 1.8.4.9
Physcomitrella patens
8
-
-
Physcomitrella patens
Other publictions for EC 1.8.4.10
No.
1st author
Pub Med
title
organims
journal
volume
pages
year
Activating Compound
Application
Cloned(Commentary)
Crystallization (Commentary)
Engineering
General Stability
Inhibitors
KM Value [mM]
Localization
Metals/Ions
Molecular Weight [Da]
Natural Substrates/ Products (Substrates)
Organic Solvent Stability
Organism
Oxidation Stability
Posttranslational Modification
Purification (Commentary)
Reaction
Renatured (Commentary)
Source Tissue
Specific Activity [micromol/min/mg]
Storage Stability
Substrates and Products (Substrate)
Subunits
Temperature Optimum [C]
Temperature Range [C]
Temperature Stability [C]
Turnover Number [1/s]
pH Optimum
pH Range
pH Stability
Cofactor
Ki Value [mM]
pI Value
IC50 Value
Activating Compound (protein specific)
Application (protein specific)
Cloned(Commentary) (protein specific)
Cofactor (protein specific)
Crystallization (Commentary) (protein specific)
Engineering (protein specific)
General Stability (protein specific)
IC50 Value (protein specific)
Inhibitors (protein specific)
Ki Value [mM] (protein specific)
KM Value [mM] (protein specific)
Localization (protein specific)
Metals/Ions (protein specific)
Molecular Weight [Da] (protein specific)
Natural Substrates/ Products (Substrates) (protein specific)
Organic Solvent Stability (protein specific)
Oxidation Stability (protein specific)
Posttranslational Modification (protein specific)
Purification (Commentary) (protein specific)
Renatured (Commentary) (protein specific)
Source Tissue (protein specific)
Specific Activity [micromol/min/mg] (protein specific)
Storage Stability (protein specific)
Substrates and Products (Substrate) (protein specific)
Subunits (protein specific)
Temperature Optimum [C] (protein specific)
Temperature Range [C] (protein specific)
Temperature Stability [C] (protein specific)
Turnover Number [1/s] (protein specific)
pH Optimum (protein specific)
pH Range (protein specific)
pH Stability (protein specific)
pI Value (protein specific)
Expression
General Information
General Information (protein specific)
Expression (protein specific)
KCat/KM [mM/s]
KCat/KM [mM/s] (protein specific)
743374
Paritala
Design, synthesis and evaluat ...
Mycobacterium tuberculosis
Nucleosides Nucleotides Nucleic Acids
34
199-220
2015
-
-
-
1
-
-
2
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
1
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
741591
Paritala
A continuous spectrophotometr ...
Mycobacterium tuberculosis
Anal. Biochem.
440
32-39
2013
-
1
-
-
-
-
-
3
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
3
-
-
-
1
-
-
-
-
1
-
1
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
3
-
-
-
-
-
-
-
-
2
2
742508
Stevenson
The X-ray crystal structure o ...
Physcomitrella patens
FEBS Lett.
587
3626-3632
2013
-
-
-
1
1
-
-
4
-
-
2
-
-
3
-
-
-
-
-
-
-
-
2
1
-
-
-
4
-
-
-
1
-
-
-
-
-
-
1
1
1
-
-
-
-
4
-
-
2
-
-
-
-
-
-
-
-
-
2
1
-
-
-
4
-
-
-
-
-
-
-
-
4
4
698950
Chung
Interaction domain on thioredo ...
Pseudomonas aeruginosa
J. Biol. Chem.
284
31181-31189
2009
-
-
-
-
-
1
-
1
-
-
-
-
-
4
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
1
1
-
-
-
-
-
-
1
-
-
1
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
699470
Hong
Identification of critical lig ...
Mycobacterium tuberculosis
J. Med. Chem.
52
5485-5495
2009
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
-
1
-
-
-
-
-
2
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
2
-
-
-
-
1
-
-
-
-
-
-
-
-
-
1
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
667746
Kim
The two-domain structure of 5- ...
Pseudomonas aeruginosa
Biochemistry
46
591-601
2007
-
-
-
-
1
-
-
2
-
1
-
-
-
4
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
2
-
1
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
669057
Gao
Noncovalent Complexes of APS R ...
Mycobacterium tuberculosis
J. Am. Soc. Mass Spectrom.
18
167-178
2007
-
-
-
-
-
-
-
-
-
1
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
687585
Kopriva
The putative moss 3'-phosphoad ...
Physcomitrella patens
J. Biol. Chem.
282
22930-22938
2007
-
-
-
-
-
-
-
-
-
5
-
2
-
1
-
-
-
1
-
-
-
2
3
-
1
-
-
-
2
-
-
2
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
5
-
2
-
-
-
-
-
-
-
2
3
-
1
-
-
-
2
-
-
-
-
-
-
-
-
-
694695
Wiedemann
The role of the novel adenosin ...
Physcomitrella patens
Plant Mol. Biol.
65
667-676
2007
-
-
1
-
1
-
-
-
-
1
-
1
-
5
-
-
-
-
-
-
-
-
2
-
1
-
-
-
1
-
-
2
-
-
-
-
-
1
2
-
1
-
-
-
-
-
-
1
-
1
-
-
-
-
-
-
-
-
2
-
1
-
-
-
1
-
-
-
-
-
-
-
-
-
667787
Kim
The interaction of 5-adenylyls ...
Pseudomonas aeruginosa
Biochim. Biophys. Acta
1710
103-112
2005
-
-
-
-
5
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
5
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
667852
Lopez-Cortes
-
Purification and preliminary c ...
Desulfovibrio aminophilus
Bioinorg. Chem. Appl.
3
81-91
2005
-
-
-
-
-
-
-
-
-
1
2
-
-
1
-
-
1
-
-
-
-
-
-
1
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
2
-
-
-
-
1
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
670496
Martin
The role of 5-adenylylsulfate ...
Pseudomonas aeruginosa
Photosyn. Res.
86
309-323
2005
-
-
1
-
-
-
-
-
-
-
-
-
-
5
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
636506
Williams
5'-Adenosinephosphosulfate lie ...
Bacillus subtilis, Mycobacterium tuberculosis, Mycolicibacterium smegmatis
J. Biol. Chem.
277
32606-32615
2002
-
-
2
-
-
-
-
-
-
-
-
2
-
3
-
-
-
-
-
-
-
-
4
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
4
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
393947
Bick
Identification of a new class ...
Burkholderia cepacia, Burkholderia cepacia DBO1 / ATCC 29424, Mycobacterium sp., Pseudomonas aeruginosa, Pseudomonas putida, Ralstonia pickettii, Rhizobium tropici
J. Bacteriol.
182
135-142
2000
1
-
1
-
-
-
2
2
-
-
-
8
-
7
-
-
-
-
-
-
-
-
15
-
-
-
-
-
1
-
-
6
1
-
-
1
-
1
6
-
-
-
-
2
1
2
-
-
-
8
-
-
-
-
-
-
-
-
15
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
636505
Neumann
Characterization of the cys ge ...
Allochromatium vinosum
Mol. Biol. Rep.
27
27-33
2000
-
-
-
-
-
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
288642
Prior
Structural and kinetic propert ...
Catharanthus roseus, Pisum sativum
Biochim. Biophys. Acta
1430
25-38
1999
-
-
1
-
-
-
-
4
-
-
1
-
-
2
-
-
1
-
-
1
-
-
2
1
-
-
-
2
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
4
-
-
1
-
-
-
-
1
-
1
-
-
2
1
-
-
-
2
-
-
-
-
-
-
-
-
-
-
636502
Abola
Reduction of adenosine-5'-phos ...
Agrobacterium tumefaciens, Rhizobium leguminosarum, Rhizobium sp., Rhizobium sp. NGR234, Sinorhizobium fredii, Sinorhizobium meliloti
J. Bacteriol.
181
5280-5287
1999
-
-
1
-
-
-
2
1
-
-
-
12
-
7
-
-
1
-
-
-
-
-
18
-
-
-
-
-
-
-
-
5
-
-
-
-
-
1
5
-
-
-
-
2
-
1
-
-
-
12
-
-
-
1
-
-
-
-
18
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-