Any feedback?
Please rate this page
(literature.php)
(0/150)

BRENDA support

Literature summary for 2.6.1.30 extracted from

  • Yamamura, E.T.
    Bioconversion of pyridoxine to pyridoxamine through pyridoxal using a Rhodococcus expression system (2019), J. Biosci. Bioeng., 127, 79-84 .
    View publication on PubMed

Application

Application Comment Organism
synthesis pyridoxamine production by bioconversion is generally preferable for environmental and energetic aspects compared to chemical synthesis. Pyridoxamine is produced from pyridoxine, a readily and economically available starting material, by bioconversion using a Rhodococcus expression system Mesorhizobium japonicum

Cloned(Commentary)

Cloned (Comment) Organism
gene ppaT, functional recombinant expression of soluble enzyme in Rhodococcus erythropolis strain JCM3191, co-expression with pyridoxine 4-oxidase (PNO) from Mesorhizobium loti from gene pno Mesorhizobium japonicum

Protein Variants

Protein Variants Comment Organism
additional information pyridoxamine is produced from pyridoxine by bioconversion using a Rhodococcus expression system. Approximately 450 mM pyridoxal are produced from 500 mM pyridoxine using recombinant Rhodococcus erythropolis expressing the pyridoxine 4-oxidase gene derived from Mesorhizobium loti. In the bioconversion of pyridoxal to pyridoxamine using recombinant Rhodococcus erythropolis expressing the pyridoxamine-pyruvate aminotransferase gene derived from Mesorhizobium loti, the bioconversion rate is approximately 80% under the same conditions as pyridoxal production. Finally, in the bioconversion of pyridoxine to pyridoxamine through pyridoxal using recombinant Rhodococcus erythropolis coexpressing the genes for pyridoxine 4-oxidase and pyridoxamine-pyruvate aminotransferase, the bioconversion rate is approximately 75%. Reactor bioconversion using the Rhodococcus expression system, method evaluation and optimization, overview Mesorhizobium japonicum

Natural Substrates/ Products (Substrates)

Natural Substrates Organism Comment (Nat. Sub.) Natural Products Comment (Nat. Pro.) Rev. Reac.
pyridoxamine + pyruvate Mesorhizobium japonicum
-
pyridoxal + L-alanine
-
?
pyridoxamine + pyruvate Mesorhizobium japonicum LMG 29417
-
pyridoxal + L-alanine
-
?
pyridoxamine + pyruvate Mesorhizobium japonicum CECT 9101
-
pyridoxal + L-alanine
-
?

Organism

Organism UniProt Comment Textmining
Mesorhizobium japonicum Q988B8 i.e. Mesorhizobium loti strain MAFF 303099
-
Mesorhizobium japonicum CECT 9101 Q988B8 i.e. Mesorhizobium loti strain MAFF 303099
-
Mesorhizobium japonicum LMG 29417 Q988B8 i.e. Mesorhizobium loti strain MAFF 303099
-

Substrates and Products (Substrate)

Substrates Comment Substrates Organism Products Comment (Products) Rev. Reac.
pyridoxamine + pyruvate
-
Mesorhizobium japonicum pyridoxal + L-alanine
-
?
pyridoxamine + pyruvate
-
Mesorhizobium japonicum LMG 29417 pyridoxal + L-alanine
-
?
pyridoxamine + pyruvate
-
Mesorhizobium japonicum CECT 9101 pyridoxal + L-alanine
-
?

Subunits

Subunits Comment Organism
? x * 42000, recombinant soluble enzyme, SDS-PAGE Mesorhizobium japonicum

Synonyms

Synonyms Comment Organism
PPAT
-
Mesorhizobium japonicum
pyridoxamine-pyruvate aminotransferase
-
Mesorhizobium japonicum

Temperature Optimum [°C]

Temperature Optimum [°C] Temperature Optimum Maximum [°C] Comment Organism
30 35 in vivo, recombinant enzyme in Rhodococcus erythropolis cells Mesorhizobium japonicum

Temperature Range [°C]

Temperature Minimum [°C] Temperature Maximum [°C] Comment Organism
25 40 over 50% of maximal activity within this range Mesorhizobium japonicum

pH Optimum

pH Optimum Minimum pH Optimum Maximum Comment Organism
6.5
-
in vivo, recombinant enzyme in Rhodococcus erythropolis cells Mesorhizobium japonicum

pH Range

pH Minimum pH Maximum Comment Organism
5.5 7.5 over 50% of maximal activity within this range Mesorhizobium japonicum