Any feedback?
Please rate this page
(literature.php)
(0/150)

BRENDA support

Literature summary for 4.1.1.11 extracted from

  • Stuecker, T.N.; Bramhacharya, S.; Hodge-Hanson, K.M.; Suen, G.; Escalante-Semerena, J.C.
    Phylogenetic and amino acid conservation analyses of bacterial L-aspartate-alpha-decarboxylase and of its zymogen-maturation protein reveal a putative interaction domain (2015), BMC Res. Notes, 8, 354 .
    View publication on PubMedView publication on EuropePMC

Cloned(Commentary)

Cloned (Comment) Organism
gene panD, sequence comparisons and phylogenetic analysis, recombinant expression of the Bacillus halodurans enzyme in DELTApanD as well as DELTApanM mutant Samonella enterica strains can functionally complement both mutant strains and restore growth on minimal medium Halalkalibacterium halodurans
gene panD, sequence comparisons and phylogenetic analysis, recombinant expression of the Bacillus halodurans enzyme in DELTApanD as well as DELTApanM mutant Samonella enterica strains can functionally complement both mutant strains and restore growth on minimal medium Bordetella pertussis
gene panD, sequence comparisons and phylogenetic analysis, recombinant expression of the Helicobacter pylori enzyme in DELTApanD as well as DELTApanM mutant Samonella enterica strains can functionally complement both mutant strains and restore growth on minimal medium Helicobacter pylori
gene panD, sequence comparisons and phylogenetic analysis, recombinant expression of the Klebsiella pneumoniae enzyme in DELTApanD as well as DELTApanM mutant Samonella enterica strains can functionally complement only the DELTApanD strain, but fails to restore growth on minimal medium in the DELTApanM strain Klebsiella pneumoniae
gene panD, sequence comparisons and phylogenetic analysis, recombinant expression of the Legionella phneumophila enzyme in DELTApanD as well as DELTApanM mutant Samonella enterica strains can functionally complement both mutant strains and restore growth on minimal medium Legionella pneumophila
gene panD, sequence comparisons and phylogenetic analysis, recombinant expression of the Magnetospirillum magneticum enzyme in DELTApanD as well as DELTApanM mutant Samonella enterica strains can functionally complement both mutant strains and restore growth on minimal medium Magnetospirillum magneticum
gene panD, sequence comparisons and phylogenetic analysis, recombinant expression of the Moorella thermoacetica enzyme in DELTApanD as well as DELTApanM mutant Samonella enterica strains can functionally complement both mutant strains and restore growth on minimal medium Moorella thermoacetica
gene panD, sequence comparisons and phylogenetic analysis, recombinant expression of the Neisseria gonorrhoeae enzyme in DELTApanD as well as DELTApanM mutant Samonella enterica strains can functionally complement both mutant strains and restore growth on minimal medium Neisseria gonorrhoeae
gene panD, sequence comparisons and phylogenetic analysis, recombinant expression of the Pseudomonas aeruginosa enzyme in DELTApanD as well as DELTApanM mutant Samonella enterica strains can functionally complement only the DELTApanD strain, but fails to restore growth on minimal medium in the DELTApanM strain Pseudomonas aeruginosa
gene panD, sequence comparisons and phylogenetic analysis, recombinant expression of the Ralstonia solanacearum enzyme in DELTApanD as well as DELTApanM mutant Samonella enterica strains can functionally complement both mutant strains and restore growth on minimal medium Ralstonia solanacearum
gene panD, sequence comparisons and phylogenetic analysis, recombinant expression of the Samonella enterica enzyme in DELTApanD as well as DELTApanM mutant Samonella enterica strains can functionally complement only the DELTApanD strain, but fails to restore growth on minimal medium in the DELTApanM strain Salmonella enterica subsp. enterica serovar Typhimurium
gene panD, sequence comparisons and phylogenetic analysis, the recombinant expression of the Corynabacterium glutamicum enzyme in DELTApanD as well as DELTApanM mutant Samonella enterica strains can functionally complement both mutant strains and restore growth on minimal medium Corynebacterium glutamicum

Protein Variants

Protein Variants Comment Organism
additional information generation of knockout mutants DELTApanD (JE13233) and DELTApanM (JE12555) strains Salmonella enterica subsp. enterica serovar Typhimurium

Natural Substrates/ Products (Substrates)

Natural Substrates Organism Comment (Nat. Sub.) Natural Products Comment (Nat. Pro.) Rev. Reac.
L-aspartate Legionella pneumophila
-
beta-alanine + CO2
-
?
L-aspartate Halalkalibacterium halodurans
-
beta-alanine + CO2
-
?
L-aspartate Corynebacterium glutamicum
-
beta-alanine + CO2
-
?
L-aspartate Helicobacter pylori
-
beta-alanine + CO2
-
?
L-aspartate Magnetospirillum magneticum
-
beta-alanine + CO2
-
?
L-aspartate Moorella thermoacetica
-
beta-alanine + CO2
-
?
L-aspartate Neisseria gonorrhoeae
-
beta-alanine + CO2
-
?
L-aspartate Ralstonia solanacearum
-
beta-alanine + CO2
-
?
L-aspartate Salmonella enterica subsp. enterica serovar Typhimurium
-
beta-alanine + CO2
-
?
L-aspartate Klebsiella pneumoniae
-
beta-alanine + CO2
-
?
L-aspartate Pseudomonas aeruginosa
-
beta-alanine + CO2
-
?
L-aspartate Bordetella pertussis
-
beta-alanine + CO2
-
?
L-aspartate Neisseria gonorrhoeae ATCC 700825 / FA 1090
-
beta-alanine + CO2
-
?
L-aspartate Corynebacterium glutamicum ATCC 13032 / DSM 20300 / JCM 1318 / LMG 3730 / NCIMB 10025
-
beta-alanine + CO2
-
?
L-aspartate Magnetospirillum magneticum AMB-1 / ATCC 700264
-
beta-alanine + CO2
-
?
L-aspartate Helicobacter pylori 26695
-
beta-alanine + CO2
-
?
L-aspartate Pseudomonas aeruginosa ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1
-
beta-alanine + CO2
-
?
L-aspartate Salmonella enterica subsp. enterica serovar Typhimurium LT2 / SGSC1412 / ATCC 700720
-
beta-alanine + CO2
-
?
L-aspartate Halalkalibacterium halodurans ATCC BAA-125 / DSM 18197 / FERM 7344 / JCM 9153 / C-125
-
beta-alanine + CO2
-
?
L-aspartate Klebsiella pneumoniae ATCC 700721 / MGH 78578
-
beta-alanine + CO2
-
?
L-aspartate Moorella thermoacetica ATCC 39073 / JCM 9320
-
beta-alanine + CO2
-
?
L-aspartate Bordetella pertussis Tohama I / ATCC BAA-589 / NCTC 13251
-
beta-alanine + CO2
-
?

Organism

Organism UniProt Comment Textmining
Bordetella pertussis Q7VXF8
-
-
Bordetella pertussis Tohama I / ATCC BAA-589 / NCTC 13251 Q7VXF8
-
-
Corynebacterium glutamicum Q9X4N0
-
-
Corynebacterium glutamicum ATCC 13032 / DSM 20300 / JCM 1318 / LMG 3730 / NCIMB 10025 Q9X4N0
-
-
Halalkalibacterium halodurans
-
-
-
Halalkalibacterium halodurans ATCC BAA-125 / DSM 18197 / FERM 7344 / JCM 9153 / C-125
-
-
-
Helicobacter pylori P56065
-
-
Helicobacter pylori 26695 P56065
-
-
Klebsiella pneumoniae A6T4S8
-
-
Klebsiella pneumoniae ATCC 700721 / MGH 78578 A6T4S8
-
-
Legionella pneumophila
-
-
-
Magnetospirillum magneticum Q2VZZ9
-
-
Magnetospirillum magneticum AMB-1 / ATCC 700264 Q2VZZ9
-
-
Moorella thermoacetica Q2RM59
-
-
Moorella thermoacetica ATCC 39073 / JCM 9320 Q2RM59
-
-
Neisseria gonorrhoeae Q5F8Y9
-
-
Neisseria gonorrhoeae ATCC 700825 / FA 1090 Q5F8Y9
-
-
Pseudomonas aeruginosa Q9HV68
-
-
Pseudomonas aeruginosa ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1 Q9HV68
-
-
Ralstonia solanacearum Q8XVU6
-
-
Salmonella enterica subsp. enterica serovar Typhimurium P65662
-
-
Salmonella enterica subsp. enterica serovar Typhimurium LT2 / SGSC1412 / ATCC 700720 P65662
-
-

Posttranslational Modification

Posttranslational Modification Comment Organism
additional information the L-aspartate-alpha-decarboxylase zymogen from Bacillus halodurans does not require PanM to process its own maturation Halalkalibacterium halodurans
additional information the L-aspartate-alpha-decarboxylase zymogen from Bacillus halodurans does not require PanM to process its own maturation Bordetella pertussis
additional information the L-aspartate-alpha-decarboxylase zymogen from Corynebacterium glutamicum does not require PanM to process its own maturation Corynebacterium glutamicum
additional information the L-aspartate-alpha-decarboxylase zymogen from Helicobacter pylori does not require PanM to process its own maturation Helicobacter pylori
additional information the L-aspartate-alpha-decarboxylase zymogen from Legionella phneumophila does not require PanM to process its own maturation Legionella pneumophila
additional information the L-aspartate-alpha-decarboxylase zymogen from Moorella thermoacetica does not require PanM to process its own maturation Moorella thermoacetica
additional information the L-aspartate-alpha-decarboxylase zymogen from Neisseria gonorrhoeae does not require PanM to process its own maturation Neisseria gonorrhoeae
additional information the L-aspartate-alpha-decarboxylase zymogen from Ralstonia solanacearum does not require PanM to process its own maturation Ralstonia solanacearum
additional information the L-aspartate-alpha-decarboxylase zymogen Magnetospirillum magneticum does not require PanM to process its own maturation Magnetospirillum magneticum
proteolytic modification the ancillary protein PanM (formerly YhhK) is required in vitro and in vivo for cleavage of the L-aspartate-alpha-decarboxylase zymogen. Conserved regions of PanM form a domain where putative interactions with L-aspartate-alpha-decarboxylases may interact, PanD and PanM structure comparisons, overview Salmonella enterica subsp. enterica serovar Typhimurium
proteolytic modification the ancillary protein PanM (formerly YhhK) is required in vitro and in vivo for cleavage of the L-aspartate-alpha-decarboxylase zymogen. Conserved regions of PanM form a domain where putative interactions with L-aspartate-alpha-decarboxylases may interact, PanD and PanM structure comparisons, overview Klebsiella pneumoniae
proteolytic modification the ancillary protein PanM (formerly YhhK) is required in vitro and in vivo for cleavage of the L-aspartate-alpha-decarboxylase zymogen. Conserved regions of PanM form a domain where putative interactions with L-aspartate-alpha-decarboxylases may interact, PanD and PanM structure comparisons, overview Pseudomonas aeruginosa

Source Tissue

Source Tissue Comment Organism Textmining
additional information 37°C is the optimal growth temperature of the bacterium Salmonella enterica subsp. enterica serovar Typhimurium
-

Substrates and Products (Substrate)

Substrates Comment Substrates Organism Products Comment (Products) Rev. Reac.
L-aspartate
-
Legionella pneumophila beta-alanine + CO2
-
?
L-aspartate
-
Halalkalibacterium halodurans beta-alanine + CO2
-
?
L-aspartate
-
Corynebacterium glutamicum beta-alanine + CO2
-
?
L-aspartate
-
Helicobacter pylori beta-alanine + CO2
-
?
L-aspartate
-
Magnetospirillum magneticum beta-alanine + CO2
-
?
L-aspartate
-
Moorella thermoacetica beta-alanine + CO2
-
?
L-aspartate
-
Neisseria gonorrhoeae beta-alanine + CO2
-
?
L-aspartate
-
Ralstonia solanacearum beta-alanine + CO2
-
?
L-aspartate
-
Salmonella enterica subsp. enterica serovar Typhimurium beta-alanine + CO2
-
?
L-aspartate
-
Klebsiella pneumoniae beta-alanine + CO2
-
?
L-aspartate
-
Pseudomonas aeruginosa beta-alanine + CO2
-
?
L-aspartate
-
Bordetella pertussis beta-alanine + CO2
-
?
L-aspartate
-
Neisseria gonorrhoeae ATCC 700825 / FA 1090 beta-alanine + CO2
-
?
L-aspartate
-
Corynebacterium glutamicum ATCC 13032 / DSM 20300 / JCM 1318 / LMG 3730 / NCIMB 10025 beta-alanine + CO2
-
?
L-aspartate
-
Magnetospirillum magneticum AMB-1 / ATCC 700264 beta-alanine + CO2
-
?
L-aspartate
-
Helicobacter pylori 26695 beta-alanine + CO2
-
?
L-aspartate
-
Pseudomonas aeruginosa ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1 beta-alanine + CO2
-
?
L-aspartate
-
Salmonella enterica subsp. enterica serovar Typhimurium LT2 / SGSC1412 / ATCC 700720 beta-alanine + CO2
-
?
L-aspartate
-
Halalkalibacterium halodurans ATCC BAA-125 / DSM 18197 / FERM 7344 / JCM 9153 / C-125 beta-alanine + CO2
-
?
L-aspartate
-
Klebsiella pneumoniae ATCC 700721 / MGH 78578 beta-alanine + CO2
-
?
L-aspartate
-
Moorella thermoacetica ATCC 39073 / JCM 9320 beta-alanine + CO2
-
?
L-aspartate
-
Bordetella pertussis Tohama I / ATCC BAA-589 / NCTC 13251 beta-alanine + CO2
-
?

Synonyms

Synonyms Comment Organism
L-Aspartate-alpha-decarboxylase
-
Legionella pneumophila
L-Aspartate-alpha-decarboxylase
-
Halalkalibacterium halodurans
L-Aspartate-alpha-decarboxylase
-
Corynebacterium glutamicum
L-Aspartate-alpha-decarboxylase
-
Helicobacter pylori
L-Aspartate-alpha-decarboxylase
-
Magnetospirillum magneticum
L-Aspartate-alpha-decarboxylase
-
Moorella thermoacetica
L-Aspartate-alpha-decarboxylase
-
Neisseria gonorrhoeae
L-Aspartate-alpha-decarboxylase
-
Ralstonia solanacearum
L-Aspartate-alpha-decarboxylase
-
Salmonella enterica subsp. enterica serovar Typhimurium
L-Aspartate-alpha-decarboxylase
-
Klebsiella pneumoniae
L-Aspartate-alpha-decarboxylase
-
Pseudomonas aeruginosa
L-Aspartate-alpha-decarboxylase
-
Bordetella pertussis
PanD
-
Legionella pneumophila
PanD
-
Halalkalibacterium halodurans
PanD
-
Corynebacterium glutamicum
PanD
-
Helicobacter pylori
PanD
-
Magnetospirillum magneticum
PanD
-
Moorella thermoacetica
PanD
-
Neisseria gonorrhoeae
PanD
-
Ralstonia solanacearum
PanD
-
Salmonella enterica subsp. enterica serovar Typhimurium
PanD
-
Klebsiella pneumoniae
PanD
-
Pseudomonas aeruginosa
PanD
-
Bordetella pertussis

Cofactor

Cofactor Comment Organism Structure
additional information the ancillary protein PanM (formerly YhhK) is required in vitro and in vivo for cleavage of the L-aspartate-alpha-decarboxylase zymogen Salmonella enterica subsp. enterica serovar Typhimurium
additional information the ancillary protein PanM (formerly YhhK) is required in vitro and in vivo for cleavage of the L-aspartate-alpha-decarboxylase zymogen Klebsiella pneumoniae
additional information the ancillary protein PanM (formerly YhhK) is required in vitro and in vivo for cleavage of the L-aspartate-alpha-decarboxylase zymogen Pseudomonas aeruginosa

General Information

General Information Comment Organism
evolution Salmonella enterica and Corynebacterium glutamicum L-aspartate-alpha-decarboxylases represent two different classes of homologues of these enzymes. Class I homologues require PanM for activation, while class II self cleave in the absence of PanM. Computer modeling of conserved amino acids using structure coordinates of PanM and L-aspartate-alpha-decarboxylase available in the protein data bank (RCSB PDB) reveal a putative site of interactions, analysis of self-cleavage mechanism of L-aspartate-alpha-decarboxylases. Phylogenetic distribution of prokaryotic L-aspartate-alpha-decarboxylase and PanM proteins, distribution of the two classes of PanD in the prokaryotes, overview Legionella pneumophila
evolution Salmonella enterica and Corynebacterium glutamicum L-aspartate-alpha-decarboxylases represent two different classes of homologues of these enzymes. Class I homologues require PanM for activation, while class II self cleave in the absence of PanM. Computer modeling of conserved amino acids using structure coordinates of PanM and L-aspartate-alpha-decarboxylase available in the protein data bank (RCSB PDB) reveal a putative site of interactions, analysis of self-cleavage mechanism of L-aspartate-alpha-decarboxylases. Phylogenetic distribution of prokaryotic L-aspartate-alpha-decarboxylase and PanM proteins, distribution of the two classes of PanD in the prokaryotes, overview Halalkalibacterium halodurans
evolution Salmonella enterica and Corynebacterium glutamicum L-aspartate-alpha-decarboxylases represent two different classes of homologues of these enzymes. Class I homologues require PanM for activation, while class II self cleave in the absence of PanM. Computer modeling of conserved amino acids using structure coordinates of PanM and L-aspartate-alpha-decarboxylase available in the protein data bank (RCSB PDB) reveal a putative site of interactions, analysis of self-cleavage mechanism of L-aspartate-alpha-decarboxylases. Phylogenetic distribution of prokaryotic L-aspartate-alpha-decarboxylase and PanM proteins, distribution of the two classes of PanD in the prokaryotes, overview Corynebacterium glutamicum
evolution Salmonella enterica and Corynebacterium glutamicum L-aspartate-alpha-decarboxylases represent two different classes of homologues of these enzymes. Class I homologues require PanM for activation, while class II self cleave in the absence of PanM. Computer modeling of conserved amino acids using structure coordinates of PanM and L-aspartate-alpha-decarboxylase available in the protein data bank (RCSB PDB) reveal a putative site of interactions, analysis of self-cleavage mechanism of L-aspartate-alpha-decarboxylases. Phylogenetic distribution of prokaryotic L-aspartate-alpha-decarboxylase and PanM proteins, distribution of the two classes of PanD in the prokaryotes, overview Helicobacter pylori
evolution Salmonella enterica and Corynebacterium glutamicum L-aspartate-alpha-decarboxylases represent two different classes of homologues of these enzymes. Class I homologues require PanM for activation, while class II self cleave in the absence of PanM. Computer modeling of conserved amino acids using structure coordinates of PanM and L-aspartate-alpha-decarboxylase available in the protein data bank (RCSB PDB) reveal a putative site of interactions, analysis of self-cleavage mechanism of L-aspartate-alpha-decarboxylases. Phylogenetic distribution of prokaryotic L-aspartate-alpha-decarboxylase and PanM proteins, distribution of the two classes of PanD in the prokaryotes, overview Magnetospirillum magneticum
evolution Salmonella enterica and Corynebacterium glutamicum L-aspartate-alpha-decarboxylases represent two different classes of homologues of these enzymes. Class I homologues require PanM for activation, while class II self cleave in the absence of PanM. Computer modeling of conserved amino acids using structure coordinates of PanM and L-aspartate-alpha-decarboxylase available in the protein data bank (RCSB PDB) reveal a putative site of interactions, analysis of self-cleavage mechanism of L-aspartate-alpha-decarboxylases. Phylogenetic distribution of prokaryotic L-aspartate-alpha-decarboxylase and PanM proteins, distribution of the two classes of PanD in the prokaryotes, overview Moorella thermoacetica
evolution Salmonella enterica and Corynebacterium glutamicum L-aspartate-alpha-decarboxylases represent two different classes of homologues of these enzymes. Class I homologues require PanM for activation, while class II self cleave in the absence of PanM. Computer modeling of conserved amino acids using structure coordinates of PanM and L-aspartate-alpha-decarboxylase available in the protein data bank (RCSB PDB) reveal a putative site of interactions, analysis of self-cleavage mechanism of L-aspartate-alpha-decarboxylases. Phylogenetic distribution of prokaryotic L-aspartate-alpha-decarboxylase and PanM proteins, distribution of the two classes of PanD in the prokaryotes, overview Neisseria gonorrhoeae
evolution Salmonella enterica and Corynebacterium glutamicum L-aspartate-alpha-decarboxylases represent two different classes of homologues of these enzymes. Class I homologues require PanM for activation, while class II self cleave in the absence of PanM. Computer modeling of conserved amino acids using structure coordinates of PanM and L-aspartate-alpha-decarboxylase available in the protein data bank (RCSB PDB) reveal a putative site of interactions, analysis of self-cleavage mechanism of L-aspartate-alpha-decarboxylases. Phylogenetic distribution of prokaryotic L-aspartate-alpha-decarboxylase and PanM proteins, distribution of the two classes of PanD in the prokaryotes, overview Ralstonia solanacearum
evolution Salmonella enterica and Corynebacterium glutamicum L-aspartate-alpha-decarboxylases represent two different classes of homologues of these enzymes. Class I homologues require PanM for activation, while class II self cleave in the absence of PanM. Computer modeling of conserved amino acids using structure coordinates of PanM and L-aspartate-alpha-decarboxylase available in the protein data bank (RCSB PDB) reveal a putative site of interactions, analysis of self-cleavage mechanism of L-aspartate-alpha-decarboxylases. Phylogenetic distribution of prokaryotic L-aspartate-alpha-decarboxylase and PanM proteins, distribution of the two classes of PanD in the prokaryotes, overview Salmonella enterica subsp. enterica serovar Typhimurium
evolution Salmonella enterica and Corynebacterium glutamicum L-aspartate-alpha-decarboxylases represent two different classes of homologues of these enzymes. Class I homologues require PanM for activation, while class II self cleave in the absence of PanM. Computer modeling of conserved amino acids using structure coordinates of PanM and L-aspartate-alpha-decarboxylase available in the protein data bank (RCSB PDB) reveal a putative site of interactions, analysis of self-cleavage mechanism of L-aspartate-alpha-decarboxylases. Phylogenetic distribution of prokaryotic L-aspartate-alpha-decarboxylase and PanM proteins, distribution of the two classes of PanD in the prokaryotes, overview Klebsiella pneumoniae
evolution Salmonella enterica and Corynebacterium glutamicum L-aspartate-alpha-decarboxylases represent two different classes of homologues of these enzymes. Class I homologues require PanM for activation, while class II self cleave in the absence of PanM. Computer modeling of conserved amino acids using structure coordinates of PanM and L-aspartate-alpha-decarboxylase available in the protein data bank (RCSB PDB) reveal a putative site of interactions, analysis of self-cleavage mechanism of L-aspartate-alpha-decarboxylases. Phylogenetic distribution of prokaryotic L-aspartate-alpha-decarboxylase and PanM proteins, distribution of the two classes of PanD in the prokaryotes, overview Pseudomonas aeruginosa
evolution Salmonella enterica and Corynebacterium glutamicum L-aspartate-alpha-decarboxylases represent two different classes of homologues of these enzymes. Class I homologues require PanM for activation, while class II self cleave in the absence of PanM. Computer modeling of conserved amino acids using structure coordinates of PanM and L-aspartate-alpha-decarboxylase available in the protein data bank (RCSB PDB) reveal a putative site of interactions, analysis of self-cleavage mechanism of L-aspartate-alpha-decarboxylases. Phylogenetic distribution of prokaryotic L-aspartate-alpha-decarboxylase and PanM proteins, distribution of the two classes of PanD in the prokaryotes, overview Bordetella pertussis
malfunction when expressed in the Salmonella enterica DELTApanM strain, all panD homologues from bacteria that also contain a panM gene (Salmonella enterica, Klebsiella pneumoniae, Pseudomonas aeruginosa) fail to restore growth on minimal medium Salmonella enterica subsp. enterica serovar Typhimurium
additional information the ancillary protein PanM (formerly YhhK) is required in vitro and in vivo for cleavage of the L-aspartate-alpha-decarboxylase zymogen Salmonella enterica subsp. enterica serovar Typhimurium
additional information the L-aspartate-alpha-decarboxylase zymogen from Corynebacterium glutamicum does not require PanM to process its own maturation Corynebacterium glutamicum