Information on Organism Glycine soja

TaxTree of Organism Glycine soja
Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
PATHWAY
BRENDA Link
KEGG Link
MetaCyc Link
(aminomethyl)phosphonate degradation
-
-
1,3-propanediol biosynthesis (engineered)
-
-
1,5-anhydrofructose degradation
-
-
2,3-trans-flavanols biosynthesis
-
-
3-phosphoinositide degradation
-
-
4-aminobutanoate degradation V
-
-
4-hydroxy-2-nonenal detoxification
-
-
ABH and Lewis epitopes biosynthesis from type 1 precursor disaccharide
-
-
abscisic acid biosynthesis
-
-
acetone degradation I (to methylglyoxal)
-
-
acetone degradation III (to propane-1,2-diol)
-
-
adenosine nucleotides degradation I
-
-
adenosine nucleotides degradation II
-
-
aerobic respiration (NDH-1 to cytochrome c oxidase via plastocyanin)
-
-
aerobic respiration I (cytochrome c)
-
-
aerobic respiration II (cytochrome c) (yeast)
-
-
aerobic respiration in cyanobacteria (NDH-2 to cytochrome c oxidase via plastocyanin)
-
-
alanine metabolism
-
-
Alanine, aspartate and glutamate metabolism
-
-
alpha-Linolenic acid metabolism
-
-
Amaryllidacea alkaloids biosynthesis
-
-
Amino sugar and nucleotide sugar metabolism
-
-
Aminobenzoate degradation
-
-
ammonia oxidation II (anaerobic)
-
-
anaerobic energy metabolism (invertebrates, cytosol)
-
-
anandamide lipoxygenation
-
-
Arachidonic acid metabolism
-
-
arachidonic acid metabolism
-
-
Arginine and proline metabolism
-
-
Arginine biosynthesis
-
-
aromatic polyketides biosynthesis
-
-
arsenite oxidation I (respiratory)
-
-
Ascorbate and aldarate metabolism
-
-
ascorbate metabolism
-
-
ATP biosynthesis
-
-
Atrazine degradation
-
-
beta-alanine biosynthesis I
-
-
biosynthesis of Lewis epitopes (H. pylori)
-
-
Biosynthesis of secondary metabolites
-
-
bupropion degradation
-
-
C20 prostanoid biosynthesis
-
-
C4 and CAM-carbon fixation
-
-
C4 photosynthetic carbon assimilation cycle, NAD-ME type
-
-
C4 photosynthetic carbon assimilation cycle, NADP-ME type
-
-
C4 photosynthetic carbon assimilation cycle, PEPCK type
-
-
caffeine degradation III (bacteria, via demethylation)
-
-
Caffeine metabolism
-
-
Calvin-Benson-Bassham cycle
-
-
camalexin biosynthesis
-
-
Carbon fixation in photosynthetic organisms
-
-
Carbon fixation pathways in prokaryotes
-
-
Carotenoid biosynthesis
-
-
carotenoid biosynthesis
-
-
cellulose degradation
-
-
cellulose degradation II (fungi)
-
-
chitin biosynthesis
-
-
Chloroalkane and chloroalkene degradation
-
-
chorismate biosynthesis from 3-dehydroquinate
-
-
chorismate metabolism
-
-
CO2 fixation into oxaloacetate (anaplerotic)
-
-
Cutin, suberine and wax biosynthesis
-
-
Cyanoamino acid metabolism
-
-
Cysteine and methionine metabolism
-
-
cysteine metabolism
-
-
denitrification
-
-
diacylglycerol and triacylglycerol biosynthesis
-
-
Diterpenoid biosynthesis
-
-
divinyl ether biosynthesis II
-
-
Drug metabolism - cytochrome P450
-
-
Drug metabolism - other enzymes
-
-
ethanol degradation IV
-
-
ethene biosynthesis III (microbes)
-
-
ethene biosynthesis IV (engineered)
-
-
ethene biosynthesis V (engineered)
-
-
Fatty acid biosynthesis
-
-
fatty acid biosynthesis initiation (type II)
-
-
Fatty acid degradation
-
-
Fe(II) oxidation
-
-
Flavone and flavonol biosynthesis
-
-
flavonoid biosynthesis
-
-
Flavonoid biosynthesis
-
-
flavonoid biosynthesis (in equisetum)
-
-
flavonoid di-C-glucosylation
-
-
flavonol biosynthesis
-
-
folate polyglutamylation
folate transformations I
-
-
folate transformations II (plants)
-
-
folate transformations III (E. coli)
-
-
formaldehyde assimilation I (serine pathway)
-
-
formaldehyde assimilation II (assimilatory RuMP Cycle)
-
-
formate oxidation to CO2
-
-
Fructose and mannose metabolism
-
-
Galactose metabolism
-
-
gibberellin biosynthesis III (early C-13 hydroxylation)
-
-
gliotoxin biosynthesis
-
-
gluconeogenesis
-
-
gluconeogenesis I
-
-
gluconeogenesis II (Methanobacterium thermoautotrophicum)
-
-
glutamate and glutamine metabolism
-
-
Glutathione metabolism
-
-
glutathione metabolism
-
-
glutathione-mediated detoxification I
-
-
glutathione-mediated detoxification II
-
-
Glycerolipid metabolism
-
-
glycine betaine degradation I
-
-
glycine betaine degradation II (mammalian)
-
-
glycine biosynthesis I
-
-
glycine metabolism
-
-
Glycine, serine and threonine metabolism
-
-
glycogen metabolism
-
-
glycolysis
-
-
Glycolysis / Gluconeogenesis
-
-
glycolysis I (from glucose 6-phosphate)
-
-
glycolysis II (from fructose 6-phosphate)
-
-
glycolysis III (from glucose)
-
-
glycolysis IV
-
-
Glycosphingolipid biosynthesis - globo and isoglobo series
-
-
Glycosphingolipid biosynthesis - lacto and neolacto series
-
-
Glyoxylate and dicarboxylate metabolism
-
-
glyphosate degradation III
-
-
gossypol biosynthesis
-
-
guanosine nucleotides degradation I
-
-
guanosine nucleotides degradation II
-
-
guanosine nucleotides degradation III
-
-
histamine degradation
-
-
Histidine metabolism
-
-
histidine metabolism
-
-
indole glucosinolate activation (intact plant cell)
-
-
inosine 5'-phosphate degradation
-
-
Inositol phosphate metabolism
-
-
jasmonic acid biosynthesis
-
-
justicidin B biosynthesis
-
-
L-alanine biosynthesis II
-
-
L-alanine degradation II (to D-lactate)
-
-
L-alanine degradation III
-
-
L-alanine degradation V (oxidative Stickland reaction)
-
-
L-alanine degradation VI (reductive Stickland reaction)
-
-
L-ascorbate biosynthesis VI (plants, myo-inositol pathway)
-
-
L-ascorbate degradation II (bacterial, aerobic)
-
-
L-ascorbate degradation III
-
-
L-cysteine biosynthesis I
-
-
L-glutamate degradation I
-
-
L-glutamate degradation V (via hydroxyglutarate)
-
-
L-glutamate degradation XI (reductive Stickland reaction)
-
-
L-glutamine biosynthesis III
-
-
L-serine biosynthesis I
-
-
L-tryptophan degradation XI (mammalian, via kynurenine)
-
-
lacto-series glycosphingolipids biosynthesis
-
-
leucodelphinidin biosynthesis
-
-
leucopelargonidin and leucocyanidin biosynthesis
-
-
Linoleic acid metabolism
-
-
lipid metabolism
-
-
lipoxin biosynthesis
-
-
matairesinol biosynthesis
-
-
melatonin degradation I
-
-
melibiose degradation
-
-
Metabolic pathways
-
-
metabolism of disaccharids
-
-
Metabolism of xenobiotics by cytochrome P450
-
-
Methane metabolism
-
-
Methanobacterium thermoautotrophicum biosynthetic metabolism
-
-
methanol oxidation to formaldehyde IV
-
-
methionine metabolism
-
-
methylaspartate cycle
Microbial metabolism in diverse environments
-
-
mixed acid fermentation
-
-
N-methyl-Delta1-pyrrolinium cation biosynthesis
-
-
NAD metabolism
-
-
NAD phosphorylation and dephosphorylation
-
-
NAD salvage pathway III (to nicotinamide riboside)
-
-
NAD(P)/NADPH interconversion
-
-
naringenin biosynthesis (engineered)
-
-
nicotine degradation IV
-
-
nicotine degradation V
-
-
nitrate assimilation
-
-
nitrate reduction I (denitrification)
-
-
nitrate reduction II (assimilatory)
-
-
nitrate reduction VII (denitrification)
-
-
nitrifier denitrification
-
-
nitrite-dependent anaerobic methane oxidation
-
-
nitrogen fixation I (ferredoxin)
-
-
Nitrogen metabolism
-
-
nocardicin A biosynthesis
-
-
non-pathway related
-
-
nucleoside and nucleotide degradation (archaea)
-
-
One carbon pool by folate
-
-
Other glycan degradation
-
-
oxalate degradation III
-
-
oxalate degradation VI
-
-
Oxidative phosphorylation
-
-
oxidative phosphorylation
-
-
partial TCA cycle (obligate autotrophs)
-
-
pentachlorophenol degradation
-
-
Pentose phosphate pathway
-
-
Phenylalanine, tyrosine and tryptophan biosynthesis
-
-
phloridzin biosynthesis
-
-
phosphate acquisition
-
-
photorespiration
-
-
Photosynthesis
-
-
photosynthesis
-
-
photosynthesis light reactions
-
-
pinobanksin biosynthesis
-
-
polyamine pathway
-
-
proanthocyanidins biosynthesis from flavanols
-
-
protective electron sinks in the thylakoid membrane (PSII to PTOX)
-
-
protein ubiquitination
-
-
Purine metabolism
-
-
purine metabolism
-
-
purine nucleobases degradation I (anaerobic)
-
-
purine nucleobases degradation II (anaerobic)
-
-
Pyrimidine metabolism
-
-
pyrimidine metabolism
-
-
Pyruvate metabolism
-
-
reactive oxygen species degradation
-
-
reductive acetyl coenzyme A pathway
-
-
reductive TCA cycle I
-
-
retinol biosynthesis
-
-
Retinol metabolism
-
-
Riboflavin metabolism
-
-
Rubisco shunt
-
-
seleno-amino acid biosynthesis (plants)
-
-
serine metabolism
-
-
sesamin biosynthesis
-
-
spermine and spermidine degradation I
-
-
Sphingolipid metabolism
-
-
stachyose degradation
-
-
Starch and sucrose metabolism
-
-
starch degradation
-
-
Steroid biosynthesis
-
-
Steroid hormone biosynthesis
-
-
sterol:steryl ester interconversion (yeast)
-
-
streptorubin B biosynthesis
-
-
Sulfur metabolism
-
-
superoxide radicals degradation
-
-
Taurine and hypotaurine metabolism
-
-
teichuronic acid biosynthesis (B. subtilis 168)
-
-
theophylline degradation
-
-
Thiamine metabolism
-
-
traumatin and (Z)-3-hexen-1-yl acetate biosynthesis
-
-
triacylglycerol degradation
-
-
Tryptophan metabolism
-
-
tryptophan metabolism
-
-
UDP-alpha-D-glucuronate biosynthesis (from myo-inositol)
-
-
UDP-N-acetyl-D-galactosamine biosynthesis I
-
-
UDP-N-acetyl-D-galactosamine biosynthesis II
-
-
urea cycle
-
-
urea degradation II
-
-
UTP and CTP dephosphorylation II
-
-
vanillin biosynthesis I
-
-
vitamin B1 metabolism
-
-
xanthohumol biosynthesis
-
-
ORGANISM
COMMENTARY hide
LITERATURE
UNIPROT
SEQUENCE DB
SOURCE
SOURCE TISSUE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
SOURCE
-
expression of GS50
Manually annotated by BRENDA team
-
analysis of flavonoids in flower petals, overview
Manually annotated by BRENDA team
-
young, expression of GS50
Manually annotated by BRENDA team
-
expression of GS50 and GS52
Manually annotated by BRENDA team
-
green, expression of GS50
Manually annotated by BRENDA team
-
expression of GS50 and GS52
Manually annotated by BRENDA team
additional information
LOCALIZATION
ORGANISM
UNIPROT
COMMENTARY hide
GeneOntology No.
LITERATURE
SOURCE
the catalytic domain of the GS52 ectoapyrase is extracellular and therefore, must act to hydrolyze extracellular nucleotides
-
Manually annotated by BRENDA team
LINKS TO OTHER DATABASES (specific for Glycine soja)