Information on Organism Hordeum vulgare

Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
EC NUMBER
COMMENTARY hide
deleted, the activty is included in EC 1.3.5.1, succinate dehydrogenase (quinone)
transferred to EC 1.7.1.1, nitrate reductase (NADH), EC 1.7.1.2, nitrate reductase [NAD(P)H], EC 1.7.1.3, nitrate reductase (NADPH), EC 1.7.5.1, nitrate reductase (quinone), EC 1.7.7.2, nitrate reductase (ferredoxin) and EC 1.9.6.1, nitrate reductase (cytochrome)
transferred to EC 1.14.14.107
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
reinstated 2006, had been eliminated in 1972
deleted 2008. Now divided into EC 4.3.1.23 (tyrosine ammonia-lyase), EC 4.3.1.24 (phenylalanine ammonia-lyase) and EC 4.3.1.25 (phenylalanine/tyrosine ammonia-lyase)
transferred to EC 5.4.2.11, EC 5.4.2.12. Now recognized as two separate enzymes EC 5.4.2.11, phosphoglycerate mutase (2,3-diphosphoglycerate-dependent) and EC 5.4.2.12, phosphoglycerate mutase (2,3-diphosphoglycerate-independent)
PATHWAY
BRENDA Link
KEGG Link
MetaCyc Link
(S)-propane-1,2-diol degradation
-
-
3-methylbutanol biosynthesis (engineered)
-
-
acetaldehyde biosynthesis I
-
-
acetylene degradation (anaerobic)
-
-
alpha-Linolenic acid metabolism
-
-
Biosynthesis of secondary metabolites
-
-
butanol and isobutanol biosynthesis (engineered)
-
-
chitin degradation to ethanol
-
-
Chloroalkane and chloroalkene degradation
-
-
Drug metabolism - cytochrome P450
-
-
ethanol degradation I
-
-
ethanol degradation II
-
-
ethanol fermentation
-
-
ethanolamine utilization
-
-
Fatty acid degradation
-
-
Glycine, serine and threonine metabolism
-
-
Glycolysis / Gluconeogenesis
-
-
heterolactic fermentation
-
-
L-isoleucine degradation II
-
-
L-leucine degradation III
-
-
L-methionine degradation III
-
-
L-phenylalanine degradation III
-
-
L-tryptophan degradation V (side chain pathway)
-
-
L-tyrosine degradation III
-
-
L-valine degradation II
-
-
leucine metabolism
-
-
Metabolic pathways
-
-
Metabolism of xenobiotics by cytochrome P450
-
-
methionine metabolism
-
-
Microbial metabolism in diverse environments
-
-
mixed acid fermentation
-
-
Naphthalene degradation
-
-
noradrenaline and adrenaline degradation
-
-
phenylalanine metabolism
-
-
phenylethanol biosynthesis
-
-
phytol degradation
-
-
propanol degradation
-
-
pyruvate fermentation to ethanol I
-
-
pyruvate fermentation to ethanol II
-
-
pyruvate fermentation to ethanol III
-
-
pyruvate fermentation to isobutanol (engineered)
-
-
Retinol metabolism
-
-
salidroside biosynthesis
-
-
serotonin degradation
-
-
superpathway of fermentation (Chlamydomonas reinhardtii)
-
-
Tyrosine metabolism
-
-
tyrosine metabolism
-
-
valine metabolism
-
-
Caprolactam degradation
-
-
detoxification of reactive carbonyls in chloroplasts
-
-
ethylene glycol biosynthesis (engineered)
-
-
Glycerolipid metabolism
-
-
L-tryptophan degradation X (mammalian, via tryptamine)
-
-
lipid metabolism
-
-
Pentose and glucuronate interconversions
-
-
pyruvate fermentation to butanol I
-
-
traumatin and (Z)-3-hexen-1-yl acetate biosynthesis
-
-
Cysteine and methionine metabolism
-
-
L-homoserine biosynthesis
-
-
Lysine biosynthesis
-
-
threonine metabolism
-
-
1,3-propanediol biosynthesis (engineered)
-
-
glycerol-3-phosphate shuttle
-
-
Glycerophospholipid metabolism
-
-
phosphatidate biosynthesis (yeast)
-
-
degradation of sugar alcohols
-
-
xylitol degradation
-
-
D-glucuronate degradation I
-
-
L-arabinose degradation II
-
-
D-sorbitol degradation I
-
-
Fructose and mannose metabolism
-
-
D-galactose degradation IV
-
-
Folate biosynthesis
-
-
Galactose metabolism
-
-
chorismate biosynthesis from 3-dehydroquinate
-
-
chorismate metabolism
-
-
Phenylalanine, tyrosine and tryptophan biosynthesis
-
-
D-xylose degradation IV
-
-
glycolate and glyoxylate degradation
-
-
Glyoxylate and dicarboxylate metabolism
-
-
L-arabinose degradation IV
-
-
(S)-lactate fermentation to propanoate, acetate and hydrogen
-
-
Bifidobacterium shunt
-
-
L-lactaldehyde degradation
-
-
lactate fermentation
-
-
Propanoate metabolism
-
-
pyruvate fermentation to (S)-lactate
-
-
Pyruvate metabolism
-
-
superpathway of glucose and xylose degradation
-
-
alanine metabolism
-
-
L-alanine degradation II (to D-lactate)
-
-
vancomycin resistance I
-
-
Methane metabolism
-
-
photorespiration
-
-
serine metabolism
-
-
isoprene biosynthesis II (engineered)
-
-
mevalonate metabolism
-
-
mevalonate pathway I
-
-
mevalonate pathway II (archaea)
-
-
mevalonate pathway III (archaea)
-
-
Terpenoid backbone biosynthesis
-
-
anaerobic energy metabolism (invertebrates, cytosol)
-
-
C4 and CAM-carbon fixation
-
-
C4 photosynthetic carbon assimilation cycle, NAD-ME type
-
-
Carbon fixation in photosynthetic organisms
-
-
Carbon fixation pathways in prokaryotes
-
-
Citrate cycle (TCA cycle)
-
-
citric acid cycle
-
-
formaldehyde assimilation I (serine pathway)
-
-
gluconeogenesis I
-
-
gluconeogenesis III
-
-
glyoxylate cycle
-
-
incomplete reductive TCA cycle
-
-
malate/L-aspartate shuttle pathway
-
-
methylaspartate cycle
-
-
partial TCA cycle (obligate autotrophs)
-
-
pyruvate fermentation to propanoate I
-
-
reductive TCA cycle I
-
-
reductive TCA cycle II
-
-
superpathway of glyoxylate cycle and fatty acid degradation
-
-
TCA cycle I (prokaryotic)
-
-
TCA cycle II (plants and fungi)
-
-
TCA cycle III (animals)
-
-
TCA cycle IV (2-oxoglutarate decarboxylase)
-
-
TCA cycle V (2-oxoglutarate:ferredoxin oxidoreductase)
-
-
anaerobic energy metabolism (invertebrates, mitochondrial)
-
-
gluconeogenesis
-
-
L-carnitine degradation III
-
-
L-malate degradation II
-
-
C4 photosynthetic carbon assimilation cycle, NADP-ME type
-
-
C4 photosynthetic carbon assimilation cycle, PEPCK type
-
-
photosynthesis
-
-
L-glutamine biosynthesis III
-
-
ethylene biosynthesis V (engineered)
-
-
Glutathione metabolism
-
-
NAD/NADP-NADH/NADPH cytosolic interconversion (yeast)
-
-
TCA cycle VI (Helicobacter)
-
-
TCA cycle VII (acetate-producers)
-
-
glucose degradation (oxidative)
-
-
Pentose phosphate pathway
-
-
pentose phosphate pathway
-
-
pentose phosphate pathway (oxidative branch) I
-
-
Entner-Doudoroff pathway I
-
-
formaldehyde oxidation I
-
-
superpathway of glycolysis and the Entner-Doudoroff pathway
-
-
L-serine biosynthesis II
-
-
isoleucine metabolism
-
-
L-isoleucine biosynthesis I (from threonine)
-
-
L-isoleucine biosynthesis III
-
-
L-valine biosynthesis
-
-
Pantothenate and CoA biosynthesis
-
-
Valine, leucine and isoleucine biosynthesis
-
-
Entner Doudoroff pathway
-
-
Benzoate degradation
-
-
butanoate fermentation
-
-
Butanoate metabolism
-
-
Phenylalanine metabolism
-
-
Arachidonic acid metabolism
-
-
arachidonic acid metabolism
-
-
capsiconiate biosynthesis
-
-
phenylpropanoid biosynthesis
-
-
Phenylpropanoid biosynthesis
-
-
phenylpropanoid biosynthesis
-
-
Flavonoid biosynthesis
-
-
leucodelphinidin biosynthesis
-
-
leucopelargonidin and leucocyanidin biosynthesis
-
-
isoprenoid biosynthesis
-
-
methylerythritol phosphate pathway I
-
-
methylerythritol phosphate pathway II
-
-
formaldehyde oxidation
-
-
formaldehyde oxidation II (glutathione-dependent)
-
-
protein S-nitrosylation and denitrosylation
-
-
2'-deoxymugineic acid phytosiderophore biosynthesis
-
-
abscisic acid biosynthesis
-
-
Carotenoid biosynthesis
-
-
chlorophyll cycle
-
-
chlorophyll metabolism
-
-
Porphyrin and chlorophyll metabolism
-
-
cholesterol degradation to androstenedione I (cholesterol oxidase)
-
-
Steroid degradation
-
-
methane metabolism
-
-
methanol oxidation to formaldehyde IV
-
-
glycerol degradation I
-
-
glycerol-3-phosphate to cytochrome bo oxidase electron transfer
-
-
glycerol-3-phosphate to fumarate electron transfer
-
-
glycerol-3-phosphate to hydrogen peroxide electron transport
-
-
glycerophosphodiester degradation
-
-
nitrate reduction IX (dissimilatory)
-
-
nitrate reduction X (dissimilatory, periplasmic)
-
-
choline degradation I
-
-
choline degradation IV
-
-
glycine betaine biosynthesis
-
-
glycine betaine biosynthesis I (Gram-negative bacteria)
-
-
glycine betaine biosynthesis II (Gram-positive bacteria)
-
-
glycine betaine biosynthesis III (plants)
-
-
formaldehyde assimilation III (dihydroxyacetone cycle)
-
-
glycerol degradation to butanol
-
-
glycolysis
-
-
glycolysis I (from glucose 6-phosphate)
-
-
glycolysis II (from fructose 6-phosphate)
-
-
glycolysis III (from glucose)
-
-
glycolysis IV (plant cytosol)
-
-
sucrose biosynthesis I (from photosynthesis)
-
-
Calvin-Benson-Bassham cycle
-
-
Arginine and proline metabolism
-
-
beta-Alanine metabolism
-
-
L-lysine degradation I
-
-
L-lysine degradation X
-
-
Lysine degradation
-
-
putrescine degradation I
-
-
putrescine degradation IV
-
-
putrescine degradation V
-
-
arginine metabolism
-
-
Carbapenem biosynthesis
-
-
L-citrulline biosynthesis
-
-
L-Ndelta-acetylornithine biosynthesis
-
-
L-ornithine biosynthesis II
-
-
L-proline biosynthesis I (from L-glutamate)
-
-
proline metabolism
-
-
acetate fermentation
-
-
acetyl-CoA biosynthesis II (NADP-dependent pyruvate dehydrogenase)
-
-
oxidative decarboxylation of pyruvate
-
-
heme metabolism
-
-
tetrapyrrole biosynthesis I (from glutamate)
-
-
Cutin, suberine and wax biosynthesis
-
-
plasmalogen biosynthesis
-
-
Spodoptera littoralis pheromone biosynthesis
-
-
sporopollenin precursors biosynthesis
-
-
wax esters biosynthesis I
-
-
Alanine, aspartate and glutamate metabolism
-
-
ethylene biosynthesis II (microbes)
-
-
L-arginine degradation I (arginase pathway)
-
-
L-proline degradation
-
-
Nicotinate and nicotinamide metabolism
-
-
Tryptophan metabolism
-
-
Valine, leucine and isoleucine degradation
-
-
Vitamin B6 metabolism
-
-
oxalate degradation IV
-
-
acetyl CoA biosynthesis
-
-
pyruvate decarboxylation to acetyl CoA
-
-
2-oxoglutarate decarboxylation to succinyl-CoA
-
-
vitamin B1 metabolism
-
-
Biotin metabolism
-
-
Fatty acid biosynthesis
-
-
fatty acid elongation -- saturated
-
-
myristate biosynthesis (mitochondria)
-
-
octanoyl-[acyl-carrier protein] biosynthesis (mitochondria, yeast)
-
-
sphingosine and sphingosine-1-phosphate metabolism
-
-
sphingosine metabolism
-
-
3,8-divinyl-chlorophyllide a biosynthesis I (aerobic, light-dependent)
-
-
jasmonic acid biosynthesis
-
-
(-)-maackiain biosynthesis
-
-
(-)-medicarpin biosynthesis
-
-
Isoflavonoid biosynthesis
-
-
bacteriochlorophyll a biosynthesis
-
-
bacteriochlorophyll c biosynthesis
-
-
bacteriochlorophyll d biosynthesis
-
-
bacteriochlorophyll e biosynthesis
-
-
chlorophyll a biosynthesis I
-
-
chlorophyll a biosynthesis II
-
-
3,8-divinyl-chlorophyllide a biosynthesis III (aerobic, light independent)
-
-
heme b biosynthesis I (aerobic)
-
-
superpathway of heme b biosynthesis from uroporphyrinogen-III
-
-
(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase)
-
-
(5Z)-dodecenoate biosynthesis II
-
-
10-cis-heptadecenoyl-CoA degradation (yeast)
-
-
10-trans-heptadecenoyl-CoA degradation (reductase-dependent, yeast)
-
-
6-gingerol analog biosynthesis (engineered)
-
-
9-cis, 11-trans-octadecadienoyl-CoA degradation (isomerase-dependent, yeast)
-
-
Biosynthesis of unsaturated fatty acids
-
-
crotonyl-CoA/ethylmalonyl-CoA/hydroxybutyryl-CoA cycle (engineered)
-
-
docosahexaenoate biosynthesis III (6-desaturase, mammals)
-
-
fatty acid beta-oxidation II (plant peroxisome)
-
-
fatty acid beta-oxidation V (unsaturated, odd number, di-isomerase-dependent)
-
-
fatty acid beta-oxidation VI (mammalian peroxisome)
-
-
fatty acid beta-oxidation VII (yeast peroxisome)
-
-
methyl ketone biosynthesis (engineered)
-
-
oleate beta-oxidation (isomerase-dependent, yeast)
-
-
propanoyl-CoA degradation II
-
-
aerobic respiration I (cytochrome c)
-
-
aerobic respiration II (cytochrome c) (yeast)
-
-
aerobic respiration III (alternative oxidase pathway)
-
-
Oxidative phosphorylation
-
-
propionate fermentation
-
-
succinate to cytochrome bd oxidase electron transfer
-
-
succinate to cytochrome bo oxidase electron transfer
-
-
carotenoid biosynthesis
-
-
3,8-divinyl-chlorophyllide a biosynthesis II (anaerobic)
-
-
chlorophyll a degradation I
-
-
chlorophyll a degradation II
-
-
chlorophyll a biosynthesis III
-
-
4-aminobutanoate degradation V
-
-
Arginine biosynthesis
-
-
ethylene biosynthesis IV (engineered)
-
-
glutamate and glutamine metabolism
-
-
L-glutamate degradation I
-
-
L-glutamate degradation V (via hydroxyglutarate)
-
-
Nitrogen metabolism
-
-
Taurine and hypotaurine metabolism
-
-
D-Glutamine and D-glutamate metabolism
-
-
GABA shunt
-
-
L-glutamate biosynthesis II
-
-
L-glutamate degradation X
-
-
L-glutamate biosynthesis I
-
-
L-glutamine degradation II
-
-
ammonia assimilation cycle I
-
-
L-glutamate biosynthesis IV
-
-
aromatic biogenic amine degradation (bacteria)
-
-
dopamine degradation
-
-
Histidine metabolism
-
-
Isoquinoline alkaloid biosynthesis
-
-
L-phenylalanine degradation IV (mammalian, via side chain)
-
-
L-tryptophan degradation VI (via tryptamine)
-
-
melatonin degradation II
-
-
putrescine degradation III
-
-
tryptophan metabolism
-
-
L-threonine degradation III (to methylglyoxal)
-
-
phenylethylamine degradation I
-
-
Tropane, piperidine and pyridine alkaloid biosynthesis
-
-
beta-alanine biosynthesis I
-
-
histamine degradation
-
-
histidine metabolism
-
-
N-methyl-Delta1-pyrrolinium cation biosynthesis
-
-
glycine biosynthesis II
-
-
glycine cleavage
-
-
glycine metabolism
-
-
ammonia assimilation cycle II
-
-
L-glutamate biosynthesis V
-
-
L-arginine degradation VI (arginase 2 pathway)
-
-
L-ornithine degradation II (Stickland reaction)
-
-
L-proline biosynthesis II (from arginine)
-
-
L-proline biosynthesis III (from L-ornithine)
-
-
folate transformations II (plants)
-
-
folate transformations III (E. coli)
-
-
One carbon pool by folate
-
-
tetrahydrofolate biosynthesis
-
-
tetrahydrofolate metabolism
-
-
L-lysine degradation XI (mammalian)
-
-
lysine metabolism
-
-
folate transformations I
-
-
reductive acetyl coenzyme A pathway I (homoacetogenic bacteria)
-
-
polyamine pathway
-
-
spermine and spermidine degradation I
-
-
spermine and spermidine degradation II
-
-
beta-alanine biosynthesis IV
-
-
spermine and spermidine degradation III
-
-
glyphosate degradation I
-
-
(5R)-carbapenem carboxylate biosynthesis
proline to cytochrome bo oxidase electron transfer
-
-
Zeatin biosynthesis
-
-
Amino sugar and nucleotide sugar metabolism
-
-
non-pathway related
-
-
superpathway of photosynthetic hydrogen production
-
-
Ubiquinone and other terpenoid-quinone biosynthesis
-
-
vitamin K-epoxide cycle
-
-
Ascorbate and aldarate metabolism
-
-
ascorbate recycling (cytosolic)
-
-
nitrate reduction II (assimilatory)
-
-
nitrate reduction V (assimilatory)
-
-
ammonia oxidation II (anaerobic)
-
-
denitrification
-
-
nitrate reduction I (denitrification)
-
-
nitrate reduction VII (denitrification)
-
-
nitrifier denitrification
-
-
nitrite-dependent anaerobic methane oxidation
-
-
nitroethane degradation
-
-
nitrate reduction III (dissimilatory)
-
-
nitrate reduction VIII (dissimilatory)
-
-
nitrate reduction VIIIb (dissimilatory)
-
-
nitrate assimilation
-
-
nitrate reduction VI (assimilatory)
-
-
2-oxoisovalerate decarboxylation to isobutanoyl-CoA
-
-
glutathione metabolism
-
-
glutathione-peroxide redox reactions
-
-
Selenocompound metabolism
-
-
thioredoxin pathway
-
-
ascorbate glutathione cycle
-
-
assimilatory sulfate reduction II
-
-
sulfate reduction
-
-
Sulfur metabolism
-
-
dissimilatory sulfate reduction I (to hydrogen sufide))
-
-
dissimilatory sulfate reduction II (to thiosulfate)
-
-
sulfite oxidation II
-
-
sulfite oxidation III
-
-
o-diquinones biosynthesis
-
-
justicidin B biosynthesis
-
-
matairesinol biosynthesis
-
-
sesamin biosynthesis
-
-
photosynthesis light reactions
-
-
ethanol degradation IV
-
-
reactive oxygen species degradation
-
-
superoxide radicals degradation
-
-
baicalein degradation (hydrogen peroxide detoxification)
-
-
betanidin degradation
-
-
luteolin triglucuronide degradation
-
-
ascorbate metabolism
-
-
L-ascorbate degradation II (bacterial, aerobic)
-
-
L-ascorbate degradation III
-
-
L-ascorbate degradation V
-
-
manganese oxidation I
-
-
Drug metabolism - other enzymes
-
-
cutin biosynthesis
-
-
vernolate biosynthesis III
-
-
hydrogen production
-
-
hydrogen production III
-
-
hydrogen production VI
-
-
hydrogen production VIII
-
-
L-glutamate degradation VII (to butanoate)
-
-
2-nitrotoluene degradation
-
-
catechol degradation to 2-hydroxypentadienoate I
-
-
catechol degradation to 2-hydroxypentadienoate II
-
-
Chlorocyclohexane and chlorobenzene degradation
-
-
phenol degradation
-
-
Styrene degradation
-
-
toluene degradation to 2-hydroxypentadienoate (via 4-methylcatechol)
-
-
toluene degradation to 2-hydroxypentadienoate (via toluene-cis-diol)
-
-
toluene degradation to 2-hydroxypentadienoate I (via o-cresol)
-
-
Xylene degradation
-
-
L-tyrosine degradation I
-
-
divinyl ether biosynthesis II
-
-
Linoleic acid metabolism
-
-
plastoquinol-9 biosynthesis I
-
-
vitamin E biosynthesis (tocopherols)
-
-
anandamide lipoxygenation
-
-
lipoxin biosynthesis
-
-
15-epi-lipoxin biosynthesis
-
-
aspirin triggered resolvin D biosynthesis
-
-
aspirin triggered resolvin E biosynthesis
-
-
leukotriene biosynthesis
-
-
resolvin D biosynthesis
-
-
9-lipoxygenase and 9-allene oxide synthase pathway
-
-
9-lipoxygenase and 9-hydroperoxide lyase pathway
-
-
divinyl ether biosynthesis I
-
-
IAA biosynthesis
-
-
indole-3-acetate biosynthesis III (bacteria)
-
-
flavonoid biosynthesis
-
-
flavonoid biosynthesis (in equisetum)
-
-
pinobanksin biosynthesis
-
-
Diterpenoid biosynthesis
-
-
gibberellin biosynthesis III (early C-13 hydroxylation)
-
-
gibberellin inactivation I (2beta-hydroxylation)
-
-
hydroxylated mugineic acid phytosiderophore biosynthesis
-
-
Benzoxazinoid biosynthesis
-
-
DIMBOA-glucoside biosynthesis
-
-
Polycyclic aromatic hydrocarbon degradation
-
-
chlorosalicylate degradation
-
-
Dioxin degradation
-
-
methylsalicylate degradation
-
-
salicylate degradation I
-
-
nitric oxide biosynthesis II (mammals)
-
-
1,5-anhydrofructose degradation
-
-
acetone degradation I (to methylglyoxal)
-
-
acetone degradation III (to propane-1,2-diol)
-
-
Amaryllidacea alkaloids biosynthesis
-
-
Aminobenzoate degradation
-
-
bupropion degradation
-
-
Caffeine metabolism
-
-
melatonin degradation I
-
-
nicotine degradation IV
-
-
nicotine degradation V
-
-
Steroid hormone biosynthesis
-
-
vanillin biosynthesis I
-
-
bacterial bioluminescence
-
-
heme degradation I
-
-
bile acid biosynthesis, neutral pathway
Primary bile acid biosynthesis
-
-
Cyanoamino acid metabolism
-
-
Glucosinolate biosynthesis
-
-
sophorolipid biosynthesis
-
-
suberin monomers biosynthesis
-
-
Flavone and flavonol biosynthesis
-
-
flavonol biosynthesis
-
-
phenylpropanoid biosynthesis, initial reactions
-
-
rosmarinic acid biosynthesis I
-
-
Stilbenoid, diarylheptanoid and gingerol biosynthesis
-
-
suberin monomers biosynthesis
-
-
cholesterol biosynthesis
-
-
cholesterol biosynthesis (plants)
-
-
ergosterol biosynthesis II
-
-
Steroid biosynthesis
-
-
octane oxidation
astaxanthin biosynthesis (bacteria, fungi, algae)
-
-
flexixanthin biosynthesis
-
-
(S)-reticuline biosynthesis I
-
-
(S)-reticuline biosynthesis II
-
-
betalamic acid biosynthesis
-
-
catecholamine biosynthesis
rosmarinic acid biosynthesis II
-
-
ethylene biosynthesis I (plants)
-
-
Betalain biosynthesis
-
-
firefly bioluminescence
-
-
L-dopa and L-dopachrome biosynthesis
-
-
pheomelanin biosynthesis
-
-
oleate biosynthesis II (animals and fungi)
-
-
sorgoleone biosynthesis
-
-
arachidonate biosynthesis
-
-
oleate biosynthesis I (plants)
-
-
palmitoleate biosynthesis II (plants and bacteria)
-
-
ergosterol biosynthesis I
-
-
phytosterol biosynthesis (plants)
-
-
C20 prostanoid biosynthesis
-
-
ethylene biosynthesis III (microbes)
-
-
iron reduction and absorption
-
-
2,3-trans-flavanols biosynthesis
-
-
proanthocyanidins biosynthesis from flavanols
-
-
adenosine nucleotides degradation I
-
-
adenosine nucleotides degradation II
-
-
caffeine degradation III (bacteria, via demethylation)
-
-
guanosine nucleotides degradation I
-
-
guanosine nucleotides degradation II
-
-
guanosine nucleotides degradation III
-
-
inosine 5'-phosphate degradation
-
-
Purine metabolism
-
-
purine metabolism
-
-
purine nucleobases degradation I (anaerobic)
-
-
purine nucleobases degradation II (anaerobic)
-
-
theophylline degradation
-
-
formate oxidation to CO2
-
-
oxalate degradation III
-
-
oxalate degradation VI
-
-
reductive acetyl coenzyme A pathway
-
-
Photosynthesis
-
-
nitrogen fixation I (ferredoxin)
-
-
Biosynthesis of various secondary metabolites - part 2
-
-
3,5-dimethoxytoluene biosynthesis
-
-
betaxanthin biosynthesis
-
-
guaiacol biosynthesis
-
-
L-dopa degradation
-
-
glutathione-mediated detoxification II
-
-
sulfur volatiles biosynthesis
-
-
dimethylsulfoniopropanoate biosynthesis I (Wollastonia)
-
-
dimethylsulfoniopropanoate biosynthesis II (Spartina)
-
-
S-methyl-L-methionine cycle
-
-
seleno-amino acid detoxification and volatilization I
-
-
seleno-amino acid detoxification and volatilization II
-
-
L-methionine biosynthesis I
-
-
L-methionine biosynthesis III
-
-
L-methionine biosynthesis IV (archaea)
-
-
L-methionine salvage from L-homocysteine
-
-
L-methionine biosynthesis II (plants)
-
-
S-adenosyl-L-methionine cycle I
-
-
S-adenosyl-L-methionine cycle II
-
-
seleno-amino acid biosynthesis (plants)
-
-
chrysoeriol biosynthesis
-
-
methylquercetin biosynthesis
-
-
phenylpropanoids methylation (ice plant)
-
-
polymethylated quercetin biosynthesis
-
-
quercetin sulfate biosynthesis
-
-
tricin biosynthesis
-
-
pyrimidine deoxyribonucleosides salvage
-
-
pyrimidine deoxyribonucleotides biosynthesis from CTP
-
-
pyrimidine deoxyribonucleotides de novo biosynthesis I
-
-
pyrimidine deoxyribonucleotides de novo biosynthesis II
-
-
pyrimidine deoxyribonucleotides de novo biosynthesis IV
-
-
Pyrimidine metabolism
-
-
pyrimidine metabolism
-
-
superpathway of pyrimidine deoxyribonucleotides de novo biosynthesis (E. coli)
-
-
mRNA capping II
-
-
ferulate and sinapate biosynthesis
-
-
free phenylpropanoid acid biosynthesis
-
-
superpathway of scopolin and esculin biosynthesis
-
-
acacetin biosynthesis
-
-
capsaicin biosynthesis
-
-
chlorogenic acid biosynthesis I
-
-
coumarins biosynthesis (engineered)
-
-
scopoletin biosynthesis
-
-
isoflavonoid biosynthesis I
-
-
isoflavonoid biosynthesis II
-
-
caffeine biosynthesis I
-
-
caffeine biosynthesis II (via paraxanthine)
-
-
theobromine biosynthesis I
-
-
carnitine metabolism
-
-
folate polyglutamylation
glycine betaine degradation I
-
-
glycine betaine degradation II (mammalian)
-
-
glycine biosynthesis I
-
-
L-arginine biosynthesis I (via L-ornithine)
-
-
L-arginine biosynthesis II (acetyl cycle)
-
-
L-arginine biosynthesis IV (archaebacteria)
-
-
L-citrulline degradation
-
-
urea cycle
Biosynthesis of ansamycins
-
-
formaldehyde assimilation II (assimilatory RuMP Cycle)
-
-
pentose phosphate pathway (non-oxidative branch)
-
-
pentose phosphate pathway (partial)
-
-
Rubisco shunt
-
-
acetoin degradation
-
-
C5-Branched dibasic acid metabolism
-
-
L-isoleucine biosynthesis II
-
-
L-isoleucine biosynthesis IV
-
-
pyruvate fermentation to (R)-acetoin I
-
-
pyruvate fermentation to (R)-acetoin II
-
-
pyruvate fermentation to (S)-acetoin
-
-
pyridoxal 5'-phosphate biosynthesis I
-
-
Thiamine metabolism
-
-
thiazole biosynthesis I (facultative anaerobic bacteria)
-
-
thiazole biosynthesis II (aerobic bacteria)
-
-
Nitrotoluene degradation
-
-
(8E,10E)-dodeca-8,10-dienol biosynthesis
-
-
(R)- and (S)-3-hydroxybutanoate biosynthesis (engineered)
-
-
10-trans-heptadecenoyl-CoA degradation (MFE-dependent, yeast)
-
-
2-deoxy-D-ribose degradation II
-
-
2-methylpropene degradation
-
-
3-hydroxypropanoate/4-hydroxybutanate cycle
-
-
4-ethylphenol degradation (anaerobic)
-
-
4-hydroxybenzoate biosynthesis III (plants)
-
-
4-oxopentanoate degradation
-
-
acetoacetate degradation (to acetyl CoA)
-
-
acetyl-CoA fermentation to butanoate II
-
-
androstenedione degradation
-
-
cholesterol degradation to androstenedione II (cholesterol dehydrogenase)
-
-
crotonate fermentation (to acetate and cyclohexane carboxylate)
-
-
Ethylbenzene degradation
-
-
ethylmalonyl-CoA pathway
-
-
fatty acid beta-oxidation I (generic)
-
-
Fatty acid elongation
-
-
fatty acid salvage
-
-
fermentation to 2-methylbutanoate
-
-
Geraniol degradation
-
-
glutaryl-CoA degradation
-
-
isopropanol biosynthesis (engineered)
-
-
ketogenesis
-
-
ketolysis
-
-
L-isoleucine degradation I
-
-
L-lysine fermentation to acetate and butanoate
-
-
methyl tert-butyl ether degradation
-
-
oleate beta-oxidation
-
-
polyhydroxybutanoate biosynthesis
-
-
pyruvate fermentation to acetone
-
-
pyruvate fermentation to butanoate
-
-
pyruvate fermentation to butanol II (engineered)
-
-
pyruvate fermentation to hexanol (engineered)
-
-
sitosterol degradation to androstenedione
-
-
diacylglycerol and triacylglycerol biosynthesis
-
-
mitochondrial L-carnitine shuttle
-
-
sterol:steryl ester interconversion (yeast)
-
-
Biosynthesis of various secondary metabolites - part 3
-
-
cysteine metabolism
-
-
D-cycloserine biosynthesis
-
-
L-cysteine biosynthesis I
-
-
L-cysteine biosynthesis VII (from S-sulfo-L-cysteine)
-
-
N-3-oxalyl-L-2,3-diaminopropanoate biosynthesis
-
-
2-amino-3-hydroxycyclopent-2-enone biosynthesis
-
-
tetrapyrrole biosynthesis II (from glycine)
-
-
(5Z)-dodecenoate biosynthesis I
-
-
8-amino-7-oxononanoate biosynthesis I
-
-
fatty acid biosynthesis initiation (mitochondria)
-
-
gondoate biosynthesis (anaerobic)
-
-
mycolate biosynthesis
-
-
oleate biosynthesis IV (anaerobic)
-
-
palmitate biosynthesis
-
-
palmitate biosynthesis II (bacteria and plant cytoplasm)
-
-
palmitoleate biosynthesis I (from (5Z)-dodec-5-enoate)
-
-
stearate biosynthesis II (bacteria and plants)
-
-
superpathway of fatty acid biosynthesis initiation (E. coli)
-
-
superpathway of mycolate biosynthesis
-
-
hordatine biosynthesis
-
-
aromatic polyketides biosynthesis
-
-
flavonoid di-C-glucosylation
-
-
naringenin biosynthesis (engineered)
-
-
phloridzin biosynthesis
-
-
xanthohumol biosynthesis
-
-
fatty acid biosynthesis initiation (animals and fungi, cytoplasm)
-
-
palmitate biosynthesis (animals and fungi, cytoplasm)
-
-
serotonin and melatonin biosynthesis
-
-
Biosynthesis of 12-, 14- and 16-membered macrolides
-
-
erythromycin D biosynthesis
-
-
resveratrol biosynthesis
-
-
Biosynthesis of enediyne antibiotics
-
-
patulin biosynthesis
-
-
phosalacine biosynthesis
-
-
phosphinothricin tripeptide biosynthesis
-
-
Phosphonate and phosphinate metabolism
-
-
(9Z)-tricosene biosynthesis
-
-
arachidonate biosynthesis IV (8-detaturase, lower eukaryotes)
-
-
arachidonate biosynthesis V (8-detaturase, mammals)
-
-
hydroxylated fatty acid biosynthesis (plants)
-
-
icosapentaenoate biosynthesis III (8-desaturase, mammals)
-
-
icosapentaenoate biosynthesis V (8-desaturase, lower eukaryotes)
-
-
juniperonate biosynthesis
-
-
sciadonate biosynthesis
-
-
stearate biosynthesis I (animals)
-
-
ultra-long-chain fatty acid biosynthesis
-
-
very long chain fatty acid biosynthesis I
-
-
very long chain fatty acid biosynthesis II
-
-
beta-D-mannosyl phosphomycoketide biosynthesis
-
-
gamma-glutamyl cycle
-
-
hypoglycin biosynthesis
-
-
phytochelatins biosynthesis
-
-
protein ubiquitination
-
-
acetyl-CoA biosynthesis III (from citrate)
-
-
glycolate and glyoxylate degradation II
-
-
glycogen degradation I
-
-
glycogen degradation II
-
-
glycogen metabolism
-
-
Starch and sucrose metabolism
-
-
starch degradation III
-
-
starch degradation V
-
-
sucrose biosynthesis II
-
-
fructan biosynthesis
-
-
glycogen biosynthesis
-
-
glycogen biosynthesis II (from UDP-D-Glucose)
-
-
cellulose biosynthesis
-
-
sucrose degradation II (sucrose synthase)
-
-
sucrose biosynthesis III
-
-
chitin biosynthesis
-
-
saponin biosynthesis II
-
-
thyroid hormone metabolism II (via conjugation and/or degradation)
-
-
glycogen biosynthesis I (from ADP-D-Glucose)
-
-
glycogen biosynthesis III (from alpha-maltose 1-phosphate)
-
-
starch biosynthesis
-
-
starch degradation
-
-
starch degradation IV
-
-
starch degradation II
-
-
1,3-beta-D-glucan biosynthesis
-
-
phenolic malonylglucosides biosynthesis
-
-
lipid A biosynthesis
-
-
lipid A-core biosynthesis (E. coli K-12)
-
-
Mannose type O-glycan biosynthesis
-
-
Other types of O-glycan biosynthesis
-
-
protein O-mannosylation I (yeast)
-
-
protein O-mannosylation II (mammals, core M1 and core M2)
-
-
protein O-mannosylation III (mammals, core M3)
-
-
anthocyanidin modification (Arabidopsis)
-
-
anthocyanin biosynthesis
-
-
Anthocyanin biosynthesis
-
-
anthocyanin biosynthesis (delphinidin 3-O-glucoside)
-
-
anthocyanin biosynthesis (pelargonidin 3-O-glucoside)
-
-
rose anthocyanin biosynthesis II (via cyanidin 3-O-beta-D-glucoside)
-
-
superpathway of anthocyanin biosynthesis (from cyanidin and cyanidin 3-O-glucoside)
-
-
Escherichia coli serotype O86 O-antigen biosynthesis
-
-
mucin core 1 and core 2 O-glycosylation
-
-
Mucin type O-glycan biosynthesis
-
-
O-antigen biosynthesis
-
-
lychnose and isolychnose biosynthesis
-
-
stachyose biosynthesis
-
-
stellariose and mediose biosynthesis
-
-
ajmaline and sarpagine biosynthesis
-
-
Indole alkaloid biosynthesis
-
-
Arabinogalactan biosynthesis - Mycobacterium
-
-
ginsenoside metabolism
-
-
ginsenosides biosynthesis
-
-
adenine and adenosine salvage I
-
-
adenine and adenosine salvage III
-
-
adenine and adenosine salvage V
-
-
arsenate detoxification I (mammalian)
-
-
fluoroacetate and fluorothreonine biosynthesis
-
-
guanine and guanosine salvage
-
-
nucleoside and nucleotide degradation (archaea)
-
-
purine deoxyribonucleosides degradation I
-
-
purine deoxyribonucleosides degradation II
-
-
purine ribonucleosides degradation
-
-
salinosporamide A biosynthesis
-
-
xanthine and xanthosine salvage
-
-
(aminomethyl)phosphonate degradation
-
-
adenine and adenosine salvage II
-
-
adenine salvage
-
-
glyphosate degradation III
-
-
UMP biosynthesis I
-
-
UMP biosynthesis II
-
-
UMP biosynthesis III
-
-
xylan biosynthesis
-
-
NAD metabolism
-
-
N-Glycan biosynthesis
-
-
protein N-glycosylation initial phase (eukaryotic)
-
-
Various types of N-glycan biosynthesis
-
-
L-methionine degradation I (to L-homocysteine)
-
-
S-adenosyl-L-methionine biosynthesis
-
-
spermidine biosynthesis I
-
-
4-hydroxy-2-nonenal detoxification
-
-
camalexin biosynthesis
-
-
gliotoxin biosynthesis
-
-
glutathione-mediated detoxification I
-
-
indole glucosinolate activation (intact plant cell)
-
-
pentachlorophenol degradation
-
-
Sesquiterpenoid and triterpenoid biosynthesis
-
-
trans-zeatin biosynthesis
-
-
L-nicotianamine biosynthesis
-
-
homocysteine and cysteine interconversion
-
-
L-cysteine biosynthesis VI (from L-methionine)
-
-
vitamin E metabolism
-
-
vitamin E biosynthesis (tocotrienols)
-
-
(R)-cysteate degradation
-
-
aspartate and asparagine metabolism
-
-
coenzyme M biosynthesis
-
-
coenzyme M biosynthesis II
-
-
L-asparagine degradation III (mammalian)
-
-
L-aspartate biosynthesis
-
-
L-aspartate degradation I
-
-
L-glutamate degradation II
-
-
L-phenylalanine biosynthesis I
-
-
L-phenylalanine degradation II (anaerobic)
-
-
L-phenylalanine degradation VI (Stickland reaction)
-
-
Novobiocin biosynthesis
-
-
sulfolactate degradation III
-
-
L-alanine biosynthesis II
-
-
L-alanine degradation III
-
-
4-hydroxybenzoate biosynthesis I (eukaryotes)
-
-
4-hydroxyphenylpyruvate biosynthesis
-
-
atromentin biosynthesis
-
-
L-tyrosine biosynthesis I
-
-
L-tyrosine degradation II
-
-
L-tyrosine degradation IV (to 4-methylphenol)
-
-
L-tyrosine degradation V (Stickland reaction)
-
-
L-tryptophan degradation XI (mammalian, via kynurenine)
-
-
CMP-legionaminate biosynthesis I
-
-
UDP-GlcNAc biosynthesis
-
-
UDP-N-acetyl-D-galactosamine biosynthesis III
-
-
UDP-N-acetyl-D-glucosamine biosynthesis I
-
-
UDP-N-acetyl-D-glucosamine biosynthesis II
-
-
L-alanine biosynthesis I
-
-
L-isoleucine biosynthesis V
-
-
L-leucine biosynthesis
-
-
L-leucine degradation I
-
-
L-leucine degradation IV (Stickland reaction)
-
-
L-valine degradation I
-
-
glycine biosynthesis III
-
-
L-arginine degradation II (AST pathway)
-
-
GDP-glucose biosynthesis
-
-
glucose and glucose-1-phosphate degradation
-
-
Neomycin, kanamycin and gentamicin biosynthesis
-
-
Streptomycin biosynthesis
-
-
sucrose degradation III (sucrose invertase)
-
-
trehalose degradation I (low osmolarity)
-
-
trehalose degradation II (cytosolic)
-
-
trehalose degradation IV
-
-
trehalose degradation V
-
-
UDP-N-acetyl-D-galactosamine biosynthesis II
-
-
mannitol cycle
-
-
metabolism of disaccharids
-
-
sucrose degradation I (sucrose phosphotransferase)
-
-
sucrose degradation IV (sucrose phosphorylase)
-
-
sucrose degradation VII (sucrose 3-dehydrogenase)
-
-
D-galactose degradation I (Leloir pathway)
-
-
D-galactose detoxification
-
-
degradation of hexoses
-
-
stachyose degradation
-
-
D-arabitol degradation
-
-
D-xylose degradation I
-
-
adenine and adenosine salvage VI
-
-
coenzyme A biosynthesis I (prokaryotic)
-
-
coenzyme A biosynthesis II (eukaryotic)
-
-
coenzyme A metabolism
-
-
cell-surface glycoconjugate-linked phosphocholine biosynthesis
-
-
phosphatidylcholine biosynthesis I
-
-
phosphatidylethanolamine bioynthesis
-
-
type IV lipoteichoic acid biosynthesis (S. pneumoniae)
-
-
L-threonine biosynthesis
-
-
1-butanol autotrophic biosynthesis (engineered)
-
-
Entner-Doudoroff pathway II (non-phosphorylative)
-
-
Entner-Doudoroff pathway III (semi-phosphorylative)
-
-
gluconeogenesis II (Methanobacterium thermoautotrophicum)
-
-
glycolysis V (Pyrococcus)
-
-
photosynthetic 3-hydroxybutanoate biosynthesis (engineered)
-
-
3-phosphoinositide biosynthesis
-
-
D-myo-inositol (1,4,5)-trisphosphate biosynthesis
-
-
Inositol phosphate metabolism
-
-
phosphatidate metabolism, as a signaling molecule
-
-
type I lipoteichoic acid biosynthesis (S. aureus)
-
-
1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza)
-
-
D-myo-inositol (3,4,5,6)-tetrakisphosphate biosynthesis
-
-
sphingolipid biosynthesis (plants)
-
-
Sphingolipid metabolism
-
-
D-myo-inositol-5-phosphate metabolism
-
-
1D-myo-inositol hexakisphosphate biosynthesis I (from Ins(1,4,5)P3)
-
-
1D-myo-inositol hexakisphosphate biosynthesis V (from Ins(1,3,4)P3)
-
-
D-myo-inositol (1,4,5,6)-tetrakisphosphate biosynthesis
-
-
1D-myo-inositol hexakisphosphate biosynthesis II (mammalian)
-
-
acetate and ATP formation from acetyl-CoA I
-
-
gallate degradation III (anaerobic)
-
-
glycine degradation (Stickland reaction)
-
-
L-threonine degradation I
-
-
methanogenesis from acetate
-
-
pyruvate fermentation to acetate II
-
-
pyruvate fermentation to acetate IV
-
-
3-dehydroquinate biosynthesis II (archaea)
-
-
dipicolinate biosynthesis
-
-
ectoine biosynthesis
-
-
grixazone biosynthesis
-
-
L-lysine biosynthesis I
-
-
L-lysine biosynthesis II
-
-
L-lysine biosynthesis III
-
-
L-lysine biosynthesis VI
-
-
Monobactam biosynthesis
-
-
norspermidine biosynthesis
-
-
spermidine biosynthesis II
-
-
L-arginine biosynthesis III (via N-acetyl-L-citrulline)
-
-
L-ornithine biosynthesis I
-
-
creatine-phosphate biosynthesis
-
-
adenosine ribonucleotides de novo biosynthesis
-
-
adenosine deoxyribonucleotides de novo biosynthesis
-
-
adenosine deoxyribonucleotides de novo biosynthesis II
-
-
CMP phosphorylation
-
-
guanosine deoxyribonucleotides de novo biosynthesis I
-
-
guanosine deoxyribonucleotides de novo biosynthesis II
-
-
guanosine ribonucleotides de novo biosynthesis
-
-
ppGpp metabolism
-
-
purine deoxyribonucleosides salvage
-
-
pyrimidine deoxyribonucleotide phosphorylation
-
-
pyrimidine deoxyribonucleotides de novo biosynthesis III
-
-
UTP and CTP de novo biosynthesis
-
-
inositol diphosphates biosynthesis
-
-
NAD biosynthesis III (from nicotinamide)
-
-
NAD salvage pathway IV (from nicotinamide riboside)
-
-
assimilatory sulfate reduction III
-
-
selenate reduction
-
-
sulfate activation for sulfonation
-
-
UDP-alpha-D-glucose biosynthesis I
-
-
choline biosynthesis III
-
-
phosphatidylcholine biosynthesis II
-
-
anhydromuropeptides recycling I
-
-
glucosylglycerol biosynthesis
-
-
UDP-alpha-D-glucuronate biosynthesis (from myo-inositol)
-
-
mRNA capping I
-
-
adenosine 5'-phosphoramidate biosynthesis
-
-
tRNA processing
-
-
anandamide biosynthesis I
-
-
anandamide biosynthesis II
-
-
diacylglycerol biosynthesis (PUFA enrichment in oilseed)
-
-
Ether lipid metabolism
-
-
palmitoyl ethanolamide biosynthesis
-
-
phosphatidylcholine resynthesis via glycerophosphocholine
-
-
ricinoleate biosynthesis
-
-
acyl carrier protein activation
-
-
acyl carrier protein metabolism
-
-
enterobactin biosynthesis
-
-
petrobactin biosynthesis
-
-
methyl indole-3-acetate interconversion
-
-
methylsalicylate degradation
-
-
retinol biosynthesis
-
-
superpathway of methylsalicylate metabolism
-
-
Bisphenol degradation
-
-
triacylglycerol degradation
-
-
phosphatidylcholine acyl editing
-
-
phospholipases
-
-
phospholipid remodeling (phosphatidate, yeast)
-
-
phospholipid remodeling (phosphatidylcholine, yeast)
-
-
phospholipid remodeling (phosphatidylethanolamine, yeast)
-
-
plasmalogen degradation
-
-
sophorosyloxydocosanoate deacetylation
-
-
pectin degradation I
-
-
pectin degradation II
-
-
chlorophyll a degradation III
-
-
chlorogenic acid degradation
-
-
cellulose and hemicellulose degradation (cellulolosome)
-
-
acyl-CoA hydrolysis
-
-
stearate biosynthesis III (fungi)
-
-
methylglyoxal degradation
-
-
methylglyoxal degradation I
-
-
acyl-[acyl-carrier protein] thioesterase pathway
-
-
cis-vaccenate biosynthesis
mycobacterial sulfolipid biosynthesis
-
-
petroselinate biosynthesis
-
-
3-phenylpropionate degradation
-
-
diethylphosphate degradation
-
-
sulfopterin metabolism
-
-
phosphate acquisition
-
-
Riboflavin metabolism
-
-
L-serine biosynthesis I
-
-
2-arachidonoylglycerol biosynthesis
-
-
stigma estolide biosynthesis
-
-
NAD salvage pathway III (to nicotinamide riboside)
-
-
pyridine nucleotide cycling (plants)
-
-
tunicamycin biosynthesis
-
-
UTP and CTP dephosphorylation I
-
-
myo-inositol biosynthesis
-
-
phytate degradation I
-
-
trehalose biosynthesis I
-
-
trehalose biosynthesis II
-
-
trehalose biosynthesis III
-
-
degradation of pentoses
-
-
D-myo-inositol (1,4,5)-trisphosphate degradation
-
-
myo-inositol biosynthesis
-
-
fructose 2,6-bisphosphate biosynthesis
-
-
D-myo-inositol (1,3,4)-trisphosphate biosynthesis
-
-
phytate degradation II
-
-
3-phosphoinositide degradation
-
-
phosphatidylinositol biosynthesis I (bacteria)
-
-
L-ascorbate biosynthesis I (L-galactose pathway)
-
-
sphingolipid biosynthesis (mammals)
-
-
sphingomyelin metabolism
-
-
starch degradation I
-
-
cellulose degradation
-
-
cellulose degradation II (fungi)
-
-
(1,4)-beta-D-xylan degradation
-
-
d-xylose degradation
-
-
chitin degradation I (archaea)
-
-
chitin degradation II (Vibrio)
-
-
chitin degradation III (Serratia)
-
-
Other glycan degradation
-
-
alpha-tomatine degradation
-
-
coumarin biosynthesis (via 2-coumarate)
-
-
linamarin degradation
-
-
linustatin bioactivation
-
-
lotaustralin degradation
-
-
neolinustatin bioactivation
-
-
Glycosphingolipid biosynthesis - globo and isoglobo series
-
-
melibiose degradation
-
-
Glycosaminoglycan degradation
-
-
Glycosphingolipid biosynthesis - ganglio series
-
-
lactose degradation II
-
-
xyloglucan degradation II (exoglucanase)
-
-
d-mannose degradation
-
-
sucrose degradation V (sucrose alpha-glucosidase)
-
-
trehalose degradation VI (periplasmic)
-
-
beta-D-glucuronide and D-glucuronate degradation
-
-
degradation of sugar acids
-
-
anhydromuropeptides recycling II
-
-
trehalose biosynthesis V
-
-
beta-(1,4)-mannan degradation
-
-
fructan degradation
-
-
protein N-glycosylation processing phase (plants and animals)
-
-
protein N-glycosylation processing phase (yeast)
-
-
lactose degradation III
-
-
complex N-linked glycan biosynthesis (plants)
-
-
complex N-linked glycan biosynthesis (vertebrates)
-
-
amygdalin and prunasin degradation
-
-
aromatic glucosinolate activation
-
-
glucosinolate activation
-
-
indole glucosinolate activation (herbivore attack)
-
-
tea aroma glycosidic precursor bioactivation
-
-
abscisic acid degradation by glucosylation
-
-
DIMBOA-glucoside activation
-
-
pyrimidine ribonucleosides salvage II
-
-
pyrimidine ribonucleosides salvage III
-
-
autoinducer AI-2 biosynthesis I
-
-
autoinducer AI-2 biosynthesis II (Vibrio)
-
-
poly-hydroxy fatty acids biosynthesis
-
-
Ac/N-end rule pathway
-
-
Arg/N-end rule pathway (eukaryotic)
-
-
Peptidoglycan biosynthesis
-
-
peptidoglycan biosynthesis
-
-
peptidoglycan biosynthesis II (staphylococci)
-
-
peptidoglycan biosynthesis IV (Enterococcus faecium)
-
-
peptidoglycan maturation (meso-diaminopimelate containing)
-
-
muropeptide degradation
-
-
5-oxo-L-proline metabolism
-
-
glutamate removal from folates
-
-
nocardicin A biosynthesis
-
-
L-asparagine degradation I
-
-
superpathway of L-aspartate and L-asparagine biosynthesis
-
-
acrylonitrile degradation I
-
-
degradation of aromatic, nitrogen containing compounds
-
-
indole-3-acetate biosynthesis II
-
-
indole-3-acetate biosynthesis IV (bacteria)
-
-
L-arginine degradation X (arginine monooxygenase pathway)
-
-
Atrazine degradation
-
-
urea degradation II
-
-
Penicillin and cephalosporin biosynthesis
-
-
canavanine degradation
-
-
L-arginine degradation VII (arginase 3 pathway)
-
-
putrescine biosynthesis III
-
-
L-arginine degradation V (arginine deiminase pathway)
-
-
L-arginine degradation IV (arginine decarboxylase/agmatine deiminase pathway)
-
-
putrescine biosynthesis II
-
-
pyrimidine nucleobases salvage II
-
-
formaldehyde oxidation VII (THF pathway)
-
-
formate assimilation into 5,10-methylenetetrahydrofolate
-
-
L-histidine degradation III
-
-
tetrahydrofolate salvage from 5,10-methenyltetrahydrofolate
-
-
indole-3-acetate biosynthesis V (bacteria and fungi)
-
-
cyanide detoxification I
-
-
UTP and CTP dephosphorylation II
-
-
pyrimidine deoxyribonucleotides dephosphorylation
-
-
1,2-dichloroethane degradation
-
-
butachlor degradation
-
-
fluoroacetate degradation
-
-
acetaldehyde biosynthesis II
-
-
long chain fatty acid ester synthesis (engineered)
-
-
pyruvate fermentation to acetate VIII
-
-
pyruvate fermentation to acetoin III
-
-
oxalate degradation V
-
-
L-glutamate degradation IV
-
-
L-glutamate degradation IX (via 4-aminobutanoate)
-
-
superpathway of ornithine degradation
-
-
arginine dependent acid resistance
-
-
L-arginine degradation III (arginine decarboxylase/agmatinase pathway)
-
-
putrescine biosynthesis I
-
-
spermidine biosynthesis III
-
-
hydroxycinnamic acid tyramine amides biosynthesis
-
-
methanofuran biosynthesis
-
-
octopamine biosynthesis
-
-
betaxanthin biosynthesis (via dopamine)
-
-
CO2 fixation into oxaloacetate (anaplerotic)
-
-
Methanobacterium thermoautotrophicum biosynthetic metabolism
-
-
UDP-alpha-D-xylose biosynthesis
-
-
heme b biosynthesis II (oxygen-independent)
-
-
heme b biosynthesis IV (Gram-positive bacteria)
-
-
spermine biosynthesis
-
-
DIBOA-glucoside biosynthesis
-
-
L-tryptophan biosynthesis
-
-
3,6-anhydro-alpha-L-galactopyranose degradation
-
-
4-deoxy-L-threo-hex-4-enopyranuronate degradation
-
-
D-fructuronate degradation
-
-
D-galacturonate degradation I
-
-
D-glucosaminate degradation
-
-
Entner-Doudoroff shunt
-
-
4-hydroxy-2(1H)-quinolone biosynthesis
-
-
acridone alkaloid biosynthesis
-
-
Phenazine biosynthesis
-
-
2-methylcitrate cycle I
-
-
2-methylcitrate cycle II
-
-
flavin biosynthesis
-
-
flavin biosynthesis I (bacteria and plants)
-
-
flavin biosynthesis II (archaea)
-
-
flavin biosynthesis III (fungi)
-
-
3-hydroxypropanoate cycle
-
-
cyanate degradation
glyoxylate assimilation
-
-
adipate degradation
-
-
benzoyl-CoA degradation I (aerobic)
-
-
fatty acid beta-oxidation IV (unsaturated, even number)
-
-
Limonene and pinene degradation
-
-
phenylacetate degradation (aerobic)
-
-
phenylacetate degradation I (aerobic)
-
-
L-histidine biosynthesis
-
-
hydrogen sulfide biosynthesis II (mammalian)
-
-
L-cysteine biosynthesis III (from L-homocysteine)
-
-
cyanide detoxification II
-
-
alginate degradation
-
-
calonectrin biosynthesis
-
-
drosopterin and aurodrosopterin biosynthesis
-
-
erythro-tetrahydrobiopterin biosynthesis I
-
-
erythro-tetrahydrobiopterin biosynthesis II
-
-
threo-tetrahydrobiopterin biosynthesis
-
-
ent-kaurene biosynthesis I
-
-
geosmin biosynthesis
-
-
carnosate bioynthesis
-
-
L-glutamate degradation VI (to pyruvate)
-
-
L-threonine degradation V
-
-
benzoate biosynthesis II (CoA-independent, non-beta-oxidative)
-
-
cinnamoyl-CoA biosynthesis
-
-
ephedrine biosynthesis
-
-
cyanide degradation
-
-
glucosinolate biosynthesis from dihomomethionine
-
-
glucosinolate biosynthesis from hexahomomethionine
-
-
glucosinolate biosynthesis from homomethionine
-
-
glucosinolate biosynthesis from pentahomomethionine
-
-
glucosinolate biosynthesis from phenylalanine
-
-
glucosinolate biosynthesis from tetrahomomethionine
-
-
glucosinolate biosynthesis from trihomomethionine
-
-
glucosinolate biosynthesis from tryptophan
-
-
glucosinolate biosynthesis from tyrosine
-
-
L-methionine salvage cycle II (plants)
-
-
UDP-N-acetylmuramoyl-pentapeptide biosynthesis I (meso-diaminopimelate containing)
-
-
UDP-N-acetylmuramoyl-pentapeptide biosynthesis II (lysine-containing)
-
-
D-serine metabolism
-
-
vancomycin resistance II
-
-
colanic acid building blocks biosynthesis
-
-
mycolyl-arabinogalactan-peptidoglycan complex biosynthesis
-
-
superpathway of UDP-glucose-derived O-antigen building blocks biosynthesis
-
-
UDP-alpha-D-galactose biosynthesis
-
-
UDP-beta-L-arabinose biosynthesis I (from UDP-alpha-D-xylose)
-
-
teichuronic acid biosynthesis (B. subtilis 168)
-
-
UDP-N-acetyl-D-galactosamine biosynthesis I
-
-
beta-1,4-D-mannosyl-N-acetyl-D-glucosamine degradation
-
-
D-mannose degradation
-
-
GDP-mannose biosynthesis
-
-
mannitol biosynthesis
-
-
mannitol degradation II
-
-
D-sorbitol biosynthesis I
-
-
all-trans-farnesol biosynthesis
-
-
bisabolene biosynthesis (engineered)
-
-
mono-trans, poly-cis decaprenyl phosphate biosynthesis
-
-
trans, trans-farnesyl diphosphate biosynthesis
-
-
eumelanin biosynthesis
-
-
streptomycin biosynthesis
-
-
2,3-dihydroxybenzoate biosynthesis
-
-
2-carboxy-1,4-naphthoquinol biosynthesis
-
-
Biosynthesis of siderophore group nonribosomal peptides
-
-
enterobactin biosynthesis
-
-
salicylate biosynthesis I
-
-
vitamin K metabolism
-
-
CO2 fixation in Crenarchaeota
-
-
conversion of succinate to propanoate
-
-
propanoyl CoA degradation I
-
-
bacilysin biosynthesis
-
-
L-phenylalanine biosynthesis II
-
-
L-tyrosine biosynthesis II
-
-
L-tyrosine biosynthesis III
-
-
lanosterol biosynthesis
-
-
O-antigen building blocks biosynthesis (E. coli)
-
-
UDP-alpha-D-galactofuranose biosynthesis
-
-
1D-myo-inositol hexakisphosphate biosynthesis IV (Dictyostelium)
-
-
di-myo-inositol phosphate biosynthesis
-
-
mycothiol biosynthesis
-
-
echinatin biosynthesis
-
-
diterpene phytoalexins precursors biosynthesis
dolabralexins biosynthesis
-
-
kauralexin biosynthesis
-
-
delta-carotene biosynthesis
-
-
lactucaxanthin biosynthesis
-
-
beta-carotene biosynthesis
-
-
chlorobactene biosynthesis
-
-
isorenieratene biosynthesis I (actinobacteria)
-
-
lutein biosynthesis
-
-
myxol-2' fucoside biosynthesis
-
-
okenone biosynthesis
-
-
Aminoacyl-tRNA biosynthesis
-
-
tRNA charging
-
-
glutaminyl-tRNAgln biosynthesis via transamidation
-
-
acetate conversion to acetyl-CoA
-
-
adlupulone and adhumulone biosynthesis
-
-
cis-genanyl-CoA degradation
-
-
colupulone and cohumulone biosynthesis
-
-
ethanol degradation III
-
-
lupulone and humulone biosynthesis
-
-
cannabinoid biosynthesis
-
-
alkane biosynthesis II
-
-
beta-methyl-branched fatty acid alpha-oxidation
-
-
ceramide and sphingolipid recycling and degradation (yeast)
-
-
ceramide biosynthesis
-
-
ceramide degradation by alpha-oxidation
-
-
gamma-linolenate biosynthesis II (animals)
-
-
icosapentaenoate biosynthesis II (6-desaturase, mammals)
-
-
linoleate biosynthesis II (animals)
-
-
long-chain fatty acid activation
-
-
wax esters biosynthesis II
-
-
itaconate degradation
-
-
4-coumarate degradation (aerobic)
-
-
4-coumarate degradation (anaerobic)
-
-
caffeoylglucarate biosynthesis
-
-
phaselate biosynthesis
-
-
trans-caffeate degradation (aerobic)
-
-
umbelliferone biosynthesis
-
-
L-asparagine biosynthesis II
-
-
L-glutamine biosynthesis I
-
-
pantothenate biosynthesis
-
-
phosphopantothenate biosynthesis I
-
-
glutathione biosynthesis
-
-
ophthalmate biosynthesis
-
-
biotin biosynthesis
-
-
biotin-carboxyl carrier protein assembly
-
-
L-asparagine biosynthesis I
-
-
Aflatoxin biosynthesis
-
-
jadomycin biosynthesis
-
-
Fe(II) oxidation
-
-
NAD/NADH phosphorylation and dephosphorylation
-
-
NADH to cytochrome bd oxidase electron transfer I
-
-
NADH to cytochrome bo oxidase electron transfer I
-
-
oxidative phosphorylation
-
-
ammonia oxidation IV (autotrophic ammonia oxidizers)
-
-
formate to nitrite electron transfer
-
-
arsenite oxidation I (respiratory)
-
-
ATP biosynthesis
-
-
oleandomycin activation/inactivation
-
-
ORGANISM
COMMENTARY hide
LITERATURE
UNIPROT
SEQUENCE DB
SOURCE
SOURCE TISSUE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
SOURCE
-
colocalization with betaine aldehyde dehydrogenase
Manually annotated by BRENDA team
high expression in, constitutive enzyme; very high expression in, no light-response during greening, undetectable in mature cells
Manually annotated by BRENDA team
immature flower; immature flower
Manually annotated by BRENDA team
-
HvUXS3 mRNA is low in all tissues; the abundance of HvUXS1 mRNA is 10fold higher in mature roots and stems than in leaves, developing grains, or floral tissues; transcriptional activity of enzyme HvUXS2 is relatively high in mature root, coleoptiles, and stems, compared with root tips, leaves and floral tissues; transcriptional activity of enzyme HvUXS4 is relatively high in mature root, coleoptiles, and stems, compared with root tips, leaves and floral tissues
Manually annotated by BRENDA team
-
at the mid-to-late uninucleate stage
Manually annotated by BRENDA team
-
before anthesis
Manually annotated by BRENDA team