1.11.1.18 2,4-dibromophenol + bromide + H2O2 - Leptoxyphium fumago 2,4,6-tribromophenol + 2 H2O - ? 461462 1.11.1.18 2-chloro-5,5-dimethyl-1,3-cyclohexane-dione HBr + H2O2 2-chloro-5,5-dimethyl-1,3-cyclohexane-dione (mcd) is the standard substrate for the determination of haloperoxidase activity using H2O2 as the oxidant Ascophyllum nodosum ? + 2 H2O - ? 461962 1.11.1.18 2-chlorodimedone + chloride + H2O2 model substrate monochlorodimedone, activity of EC 1.11.1.10 Leptoxyphium fumago 1,1-dimethyl-4,4-dichloro-3,5-cyclohexanedione + 2 H2O - ? 461468 1.11.1.18 4-bromophenol + bromide + H2O2 - Leptoxyphium fumago 2,4-dibromophenol + 2 H2O - ? 461482 1.11.1.18 beta-estradiol + bromide + H2O2 - Leptoxyphium fumago ? + 2 H2O - ? 461548 1.11.1.18 beta-estradiol + chloride + H2O2 - Leptoxyphium fumago ? + 2 H2O - ? 461549 1.11.1.18 Br- + H2O2 + (3E,6R,7R)-laurediol - Laurencia nipponica deacetyllaurencin + H2O - ? 441144 1.11.1.18 Br- + H2O2 + (3R)-3-bromo-2,6-dimethylhept-5-en-2-ol - Ascophyllum nodosum 3,5-dibromo-2,6-dimethylheptane-2,6-diol + H2O 70% yield, at pH 6.0 ? 404553 1.11.1.18 Br- + H2O2 + 1,1-dimethyl-4-chloro-3,5-cyclohexanedione i.e. monochlorodimedone Streptomyces griseus ? - ? 388250 1.11.1.18 Br- + H2O2 + 1,1-dimethyl-4-chloro-3,5-cyclohexanedione i.e. monochlorodimedone Streptomyces venezuelae ? - ? 388250 1.11.1.18 Br- + H2O2 + 1,1-dimethyl-4-chloro-3,5-cyclohexanedione i.e. monochlorodimedone Kitasatospora aureofaciens ? - ? 388250 1.11.1.18 Br- + H2O2 + 1,1-dimethyl-4-chloro-3,5-cyclohexanedione i.e. monochlorodimedone Macrocystis pyrifera ? - ? 388250 1.11.1.18 Br- + H2O2 + 1,1-dimethyl-4-chloro-3,5-cyclohexanedione i.e. monochlorodimedone Corallina officinalis ? - ? 388250 1.11.1.18 Br- + H2O2 + 1,1-dimethyl-4-chloro-3,5-cyclohexanedione i.e. monochlorodimedone Ochtodes secundiramea ? - ? 388250 1.11.1.18 Br- + H2O2 + 1,1-dimethyl-4-chloro-3,5-cyclohexanedione i.e. monochlorodimedone Fucus distichus ? - ? 388250 1.11.1.18 Br- + H2O2 + 1,1-dimethyl-4-chloro-3,5-cyclohexanedione i.e. monochlorodimedone Corallina pilulifera ? - ? 388250 1.11.1.18 Br- + H2O2 + 1,1-dimethyl-4-chloro-3,5-cyclohexanedione i.e. monochlorodimedone Ecklonia cava subsp. stolonifera ? - ? 388250 1.11.1.18 Br- + H2O2 + 1,1-dimethyl-4-chloro-3,5-cyclohexanedione i.e. monochlorodimedone. Requirement of a catalytic triad in the halogenation mechanism Pseudomonas fluorescens ? - ? 388250 1.11.1.18 Br- + H2O2 + 1,1-dimethyl-4-chloro-3,5-cyclohexanedione i.e. monochlorodimedone Streptomyces griseus Tu6 ? - ? 388250 1.11.1.18 Br- + H2O2 + 1,1-dimethyl-4-chloro-3,5-cyclohexanedione i.e. monochlorodimedone Corallina pilulifera bromochlorodimedone + ? - ? 388251 1.11.1.18 Br- + H2O2 + 1-methoxynaphthalene - Corallina pilulifera 1-methoxy-4-bromonaphthalene + H2O - ? 388252 1.11.1.18 Br- + H2O2 + 1-phenylpent-4-en-1-ol - Ascophyllum nodosum 4-bromo-1-phenylpentane-1,5-diol + 5-bromo-1-phenylpentane-1,4-diol + 2-(bromomethyl)-5-phenyltetrahydrofuran + H2O 30% yield of 4-bromo-1-phenylpentane-1,5-diol, 28% yield of 5-bromo-1-phenylpentane-1,4-diol, and 25% yield of 2-(bromomethyl)-5-phenyltetrahydrofuran, at pH 6.0 ? 404554 1.11.1.18 Br- + H2O2 + 2,4,6-tribromophenol - Corallina officinalis 1,3,6,8-tetrabromodibenzo-p-dioxin formation of ppb-level yields of 1,3,6,8-tetrabromodibenzo-p-dioxin through direct condensation. Additionally, 1,3,7,9-tetrabromodibenzo-p-dioxin, 1,2,4,7-tetrabromodibenzo-p-dioxin, and/or 1,2,4,8-tetrabromodibenzo-p-dioxin and 1,3,7-tribromodibenzo-p-dioxin and 1,3,8-tribromodibenzo-p-dioxin are frequently formed but at lower yields. Reaction probably proceeds via bromine shifts or Smiles rearrangements, whereas the tribromodibenzo-p-dioxins may result from subsequent debromination processes ? 426036 1.11.1.18 Br- + H2O2 + 2-hydroxybenzyl alcohol - Corallina pilulifera 2,4,6-tribromobenzyl alcohol + H2O - ? 388260 1.11.1.18 Br- + H2O2 + 2-methoxyphenol - Ascophyllum nodosum 2-bromo-6-methoxyphenol + 4-bromo-6-methoxyphenol + H2O 56% of product, in a 21/79 mixture of o-/p-regioisomers, plus 10% 2,4-dibromo-6-methoxyphenol ? 426037 1.11.1.18 Br- + H2O2 + 2-methylphenol - Ascophyllum nodosum 2-bromo-6-methylphenol + 4-bromo-6-methylphenol + H2O 68% of product, in a 16/84 mixture of o-/p-regioisomers, plus 4% 2,4-dibromophenol ? 426038 1.11.1.18 Br- + H2O2 + 2-t-butylphenol - Ascophyllum nodosum 2-bromo-6-t-butylphenol + 4-bromo-6-t-butylphenol + H2O 42% of product, in a 36/64 mixture of o-/p-regioisomers, plus 2% 2,4-dibromo-6-t-butylphenol ? 426039 1.11.1.18 Br- + H2O2 + 4-pentynoic acid catalyzes the bromolactonization of 4-pentynoic acid forming (5E)-bromomethylidenetetrahydro-2-furanone. Formation of the bromofuranone likely results from an initial bromination reaction at the terminal alkyne, followed by cyclization from intermolecular nucleophilic attack by the terminal hydroxyl group Delisea pulchra (5E)-bromomethylidenetetrahydro-2-furanone - ? 426040 1.11.1.18 Br- + H2O2 + 5-methyl-1-phenylhex-4-en-1-ol - Ascophyllum nodosum 4-bromo-5-methyl-1-phenylhexane-1,5-diol + 2-(1-bromo-1-methylethyl)-5-phenyltetrahydrofuran + 3-bromo-2,2-dimethyl-6-phenyltetrahydro-2H-pyran + H2O 69% yield of 4-bromo-5-methyl-1-phenylhexane-1,5-diol, 6% yield of 2-(1-bromo-1-methylethyl)-5-phenyltetrahydrofuran, and 9% yield of 3-bromo-2,2-dimethyl-6-phenyltetrahydro-2H-pyran, at pH 6.0 ? 404555 1.11.1.18 Br- + H2O2 + aniline in absence of Br- the enzyme oxidizes aniline via azobenzene and azoxybenzene finally into nitrobenzene Pseudomonas putida o-bromoaniline + p-bromoaniline + ? - ? 388249 1.11.1.18 Br- + H2O2 + aniline no activity in absence of Br- Corallina pilulifera o-bromoaniline + p-bromoaniline + ? - ? 388249 1.11.1.18 Br- + H2O2 + anisole - Corallina pilulifera p-bromoanisole + o-bromoanisole + H2O - ? 388254 1.11.1.18 Br- + H2O2 + cyclohexene - Corallina pilulifera trans-1-hydroxy-2-bromocyclohexane - ? 388255 1.11.1.18 Br- + H2O2 + cytidine - Corallina pilulifera 5-bromocytidine + H2O - ? 388256 1.11.1.18 Br- + H2O2 + cytosine - Corallina pilulifera 5-bromocytosine + H2O - ? 388257 1.11.1.18 Br- + H2O2 + methyl pyrrole-2-carboxylate - Ascophyllum nodosum methyl 5-amino-4-bromocyclopenta-1,3-diene-1-carboxylate + methyl 5-amino-3-bromocyclopenta-1,3-diene-1-carboxylate + methyl 5-amino-3,4-dibromocyclopenta-1,3-diene-1-carboxylate + H2O 5% yield of methyl 5-amino-4-bromocyclopenta-1,3-diene-1-carboxylate, 59% yield of methyl 5-amino-3-bromocyclopenta-1,3-diene-1-carboxylate, and 5% yield of methyl 5-amino-3,4-dibromocyclopenta-1,3-diene-1-carboxylate, at pH 6.3 and 25°C ? 404557 1.11.1.18 Br- + H2O2 + methyl pyrrole-2-carboxylate - Ascophyllum nodosum methyl 4-bromo-1H-pyrrole-2-carboxylate + methyl 5-bromo-1H-pyrrole-2-carboxylate + H2O quantitative conversion within 24 h, 94% of product in 93/7 ratio of 4-/5-substituted regioisomers ? 426041 1.11.1.18 Br- + H2O2 + monochlorodimedon - Kitasatospora aureofaciens ? - ? 414387 1.11.1.18 Br- + H2O2 + monochlorodimedone - Corallina officinalis ? - ? 388259 1.11.1.18 Br- + H2O2 + monochlorodimedone - Ascophyllum nodosum H2O + ? - ? 404558 1.11.1.18 Br- + H2O2 + monochlorodimedone - Synechococcus sp. ? + H2O - ? 426042 1.11.1.18 Br- + H2O2 + monochlorodimedone - Gracilaria changii ? + H2O - ? 426042 1.11.1.18 Br- + H2O2 + monochlorodimedone - Synechococcus sp. WH8020 ? + H2O - ? 426042 1.11.1.18 Br- + H2O2 + monochlorodimedone - Synechococcus sp. CC9311 ? + H2O - ? 426042 1.11.1.18 Br- + H2O2 + monochlorodimedone - Laurencia nipponica monobromo-monochlorodimedone + H2O - ? 441145 1.11.1.18 Br- + H2O2 + o-dianisidine - Neopyropia yezoensis ? - ? 441146 1.11.1.18 Br- + H2O2 + o-dianisidine - Neopyropia yezoensis TU-1 ? - ? 441146 1.11.1.18 Br- + H2O2 + phenol - Corallina pilulifera 2,4,6-tribromophenol + H2O - ? 388261 1.11.1.18 Br- + H2O2 + phenol - Ascophyllum nodosum 2-bromophenol + 4-bromophenol + H2O 69% of product, in a 91/9 mixture of o-/p-regioisomers, plus 3% 2,4-dibromo-6-methylphenol and some 2,4,6-tribromophenol ? 426044 1.11.1.18 Br- + H2O2 + phenol red - Delisea pulchra phenol blue + ? - ? 426043 1.11.1.18 Br- + H2O2 + pyrazole - Corallina pilulifera 4-bromopyrazole + H2O - ? 388262 1.11.1.18 Br- + H2O2 + styrene - Corallina pilulifera DL-1 -bromo-2-hydroxy-2-phenylethane + H2O - ? 388263 1.11.1.18 Br- + H2O2 + thiophene - Corallina pilulifera 2-bromothiophene + H2O - ? 388264 1.11.1.18 Br- + H2O2 + trans-cinnamic acid - Corallina pilulifera (+/-)-erythro-2-bromo-3-hydroxy-3-phenylpropionic acid + H2O - ? 388265 1.11.1.18 Br- + H2O2 + trans-cinnamyl alcohol - Corallina pilulifera (+/-)-1,3-dihydroxy-2-bromo-3-phenylpropane + H2O - ? 388266 1.11.1.18 Br- + H2O2 + uracil - Corallina pilulifera 5-bromouracil + H2O - ? 388267 1.11.1.18 Capso + Br- + peracetic acid - Macrocystis pyrifera ? - ? 388291 1.11.1.18 Capso + Br- + peracetic acid - Fucus distichus ? - ? 388291 1.11.1.18 carvacrol + chloride + H2O2 - Leptoxyphium fumago ? + 2 H2O - ? 461556 1.11.1.18 cyclohexene + HBr + H2O2 - Kitasatospora aureofaciens ? + 2 H2O - ? 462398 1.11.1.18 cyclohexene + HBr + H2O2 - Kitasatospora aureofaciens ATCC 10762 ? + 2 H2O - ? 462398 1.11.1.18 cytosine + Br- + peracetic acid - Macrocystis pyrifera 5-bromocytosine + ? - ? 388427 1.11.1.18 cytosine + Br- + peracetic acid - Fucus distichus 5-bromocytosine + ? - ? 388427 1.11.1.18 equiline + bromide + H2O2 - Leptoxyphium fumago ? + 2 H2O - ? 461589 1.11.1.18 equiline + chloride + H2O2 - Leptoxyphium fumago ? + 2 H2O - ? 461590 1.11.1.18 estradiol + 2 bromide + 2 H2O2 - Leptoxyphium fumago 2,4-dibromo beta-estradiol + 4 H2O - ? 462479 1.11.1.18 estradiol + 2 chloride + 2 H2O2 - Leptoxyphium fumago 2,4-dichloro beta-estradiol + 4 H2O - ? 462480 1.11.1.18 estradiol + bromide + H2O2 - Leptoxyphium fumago 2-bromo beta-estradiol + 2 H2O - ? 462481 1.11.1.18 estradiol + bromide + H2O2 - Leptoxyphium fumago 4-bromo beta-estradiol + 2 H2O - ? 462482 1.11.1.18 estradiol + chloride + H2O2 - Leptoxyphium fumago 2-chloro beta-estradiol + 2 H2O - ? 462483 1.11.1.18 estradiol + chloride + H2O2 - Leptoxyphium fumago 4-chloro beta-estradiol + 2 H2O - ? 462484 1.11.1.18 estrone + bromide + H2O2 - Leptoxyphium fumago ? + 2 H2O - ? 461591 1.11.1.18 estrone + chloride + H2O2 - Leptoxyphium fumago ? + 2 H2O - ? 461592 1.11.1.18 Hepes + Br- + peracetic acid - Macrocystis pyrifera ? - ? 388872 1.11.1.18 Hepes + Br- + peracetic acid - Fucus distichus ? - ? 388872 1.11.1.18 hesperetin + chloride + H2O2 - Leptoxyphium fumago ? + 2 H2O - ? 461613 1.11.1.18 I- + H2O2 - Ascophyllum nodosum triiodide + ? - ? 388917 1.11.1.18 I- + H2O2 - Corallina officinalis triiodide + ? - ? 388917 1.11.1.18 I- + H2O2 + monochlorodimedone - Gracilaria changii ? + H2O - ? 426504 1.11.1.18 I- + H2O2 + o-dianisidine - Neopyropia yezoensis ? - ? 441462 1.11.1.18 I- + H2O2 + o-dianisidine - Neopyropia yezoensis TU-1 ? - ? 441462 1.11.1.18 I- + H2O2 + pyrazole - Corallina pilulifera 4-iodopyrazole + H2O - ? 388914 1.11.1.18 I- + H2O2 + uracil - Corallina pilulifera 5-iodouracil + H2O - ? 388915 1.11.1.18 indene + HBr + H2O2 - Kitasatospora aureofaciens ? + 2 H2O - ? 462601 1.11.1.18 indene + HBr + H2O2 - Kitasatospora aureofaciens ATCC 10762 ? + 2 H2O - ? 462601 1.11.1.18 KBr + 2 H2O - Thermothelomyces thermophilus KH + HBr + H2O2 - ? 447639 1.11.1.18 monochlorodimedone + Br- + H2O2 - Kappaphycus alvarezii ? - ? 231261 1.11.1.18 monochlorodimedone + Br- + H2O2 - Kappaphycus alvarezii Doty ? - ? 231261 1.11.1.18 monochlorodimedone + HBr + H2O2 - Corallina officinalis monobromomonochlorodimenone + 2 H2O - ? 462726 1.11.1.18 monochlorodimedone + HBr + H2O2 the monochlorodimedone stable enol form exists as an enolic anion without the ketoic isomer at reaction pH 5.0 Kitasatospora aureofaciens monobromomonochlorodimenone + 2 H2O - ? 462726 1.11.1.18 monochlorodimedone + HBr + H2O2 the monochlorodimedone stable enol form exists as an enolic anion without the ketoic isomer at reaction pH 5.0 Kitasatospora aureofaciens ATCC 10762 monobromomonochlorodimenone + 2 H2O - ? 462726 1.11.1.18 Mops + Br- + peracetic acid - Macrocystis pyrifera 5-bromocytosine + ? - ? 389180 1.11.1.18 Mops + Br- + peracetic acid - Fucus distichus 5-bromocytosine + ? - ? 389180 1.11.1.18 additional information plays an important role in eliminating epiphytic organisms, especially microalgae on the surface. The activity increased during winter and spring and peaked in late spring. Functions to eliminate H2O2 compensating for catalase Corallina pilulifera ? - ? 89 1.11.1.18 additional information the lowest specific bromoperoxidase activity occurs during the midexponential phase of growth and then increases steeply during the late stationary phase, suggesting that bromoperoxidase production is part of secondary metabolism Ochtodes secundiramea ? - ? 89 1.11.1.18 additional information the role of the enzyme is related to its activity as a catalase rather than as a halogenatingt agent Streptomyces venezuelae ? - ? 89 1.11.1.18 additional information strong brominating aactivity, weak chlorinating and iodating activities, catalyzes both benzylic and aromatic hydroxylations (e.g., of toluene and naphthalene) Cyclocybe aegerita ? - ? 89 1.11.1.18 additional information the alkyl hydroperoxides ethyl hydroperoxide, cuminyl hydroperoxide, and tert-butyl hydroperoxide do not support bromination of dioxygen formation catalyzed by V-BrPO Macrocystis pyrifera ? - ? 89 1.11.1.18 additional information the alkyl hydroperoxides ethyl hydroperoxide, cuminyl hydroperoxide, and tert-butyl hydroperoxide do not support bromination of dioxygen formation catalyzed by V-BrPO Fucus distichus ? - ? 89 1.11.1.18 additional information the natural brominated compound is dibromoacetaldehyde Kappaphycus alvarezii ? - ? 89 1.11.1.18 additional information enzyme uses hydrogen peroxide and bromide yielding molecular bromine as reagent for electrophilic hydrocarbon bromination Ascophyllum nodosum ? - ? 89 1.11.1.18 additional information no substrate: chloride Synechococcus sp. ? - ? 89 1.11.1.18 additional information no substrate: chloride Gracilaria changii ? - ? 89 1.11.1.18 additional information no activity with Cl- Neopyropia yezoensis ? - ? 89 1.11.1.18 additional information besides its phytase activity (EC 3.1.3.8) with myo-inositol hexakisphosphate, the enzyme rSt-Phy also shows haloperoxidase activity. Enzyme rSt-Phy brings out a change in color of phenol red from red-orange to blue-violet in the presence of metavanadate ions, H2O2 and KBr in the reaction mixture, which confirms the bromoperoxidation of phenol red. Only histidine acid phosphatases with the active site sequence RHGXRXP can function as haloperoxidase, when vanadate ion is incorporated into the active site. Vanadate is a phosphate analogue, which is generally considered to bind as a transition state analogue to the phosphoryl transfer enzymes and inhibits their activities Thermothelomyces thermophilus ? - ? 89 1.11.1.18 additional information production of polyhalogenated carbazoles (PHCs) from halogenation of carbazole in the presence of bromide and/or chloride under the catalysis of chloroperoxidase (CPO) isolated from the marine fungus Caldariomyces fumago, see also EC 1.11.1.10. A total of 25 congeners including mono-to tetra-substituted chlorinated, brominated, and mixed halogenated carbazoles (with substitution patterns of -BrCl, -BrCl2, -BrCl3, -Br2Cl, -Br2Cl2, and -Br3Cl) are produced from the reactions under various conditions. The PHC product profiles are apparently dependent on the halide concentrations. In the CPO-mediated chlorination of carbazole, 3-mono- and 3,6-dichlorocarbazoles predominated in the formation products. In addition to the less abundant mixed halogenated carbazoles (-Br2Cl), 1,3,6-tri- and 1,3,6,8-tetrabromocarbazoles are the dominant products in reactions containing both Br- and Cl- Leptoxyphium fumago ? - - 89 1.11.1.18 additional information assay method development and evaluation: assay for BrPO (and ClPO) activity, based on the fluorescent probe, [6-(4'-amino)phenoxy-3H-xanthen-3-on-9-yl]benzoic acid [aminophenyl fluorescein (APF)], designed to selectively detect highly reactive oxygen species (hROS), overview. APF-based assays are used in different applications: (i) quantify the BrPO activity in two different species of diatom, Porosira glacialis and Fragilariopsis cylindrus, and (ii) measure BrPO activity in planktonic communities of coastal waters and investigate the size-distribution and temporal change of enzyme rates. In the APF assay, the hypohalite that generates fluorescein will potentially also react with other organic compounds if they are present, including molecules susceptible to electrophilic attack and halogenation. Bromoperoxidase concentration dependence of the dearylation of APF to fluorescein. The APF assay cannot be used to detect iodoperoxidases (IPO) activity Fragilariopsis cylindrus ? - - 89 1.11.1.18 additional information assay method development and evaluation: assay for BrPO (and ClPO) activity, based on the fluorescent probe, [6-(4'-amino)phenoxy-3H-xanthen-3-on-9-yl]benzoic acid [aminophenyl fluorescein (APF)], designed to selectively detect highly reactive oxygen species (hROS), overview. APF-based assays are used in different applications: (i) quantify the BrPO activity in two different species of diatom, Porosira glacialis and Fragilariopsis cylindrus, and (ii) measure BrPO activity in planktonic communities of coastal waters and investigate the size-distribution and temporal change of enzyme rates. In the APF assay, the hypohalite that generates fluorescein will potentially also react with other organic compounds if they are present, including molecules susceptible to electrophilic attack and halogenation. Bromoperoxidase concentration dependence of the dearylation of APF to fluorescein. The APF assay cannot be used to detect iodoperoxidases (IPO) activity Porosira glacialis ? - - 89 1.11.1.18 additional information assay method development and evaluation: assay for BrPO (and ClPO) activity, based on the fluorescent probe, [6-(4'-amino)phenoxy-3H-xanthen-3-on-9-yl]benzoic acid [aminophenyl fluorescein (APF)], designed to selectively detect highly reactive oxygen species (hROS), overview. APF-based assays are used in different applications: (i) to demonstrate the generation of highly reactive hypohalite by the partially purified V-BrPO of the red seaweed Corallina officinalis and to establish the temperature response and pH optima for V-BrPO of Corallina officinalis, and (ii) measure BrPO activity in planktonic communities of coastal waters and investigate the size-distribution and temporal change of enzyme rates. In the APF assay, the hypohalite that generates fluorescein will potentially also react with other organic compounds if they are present, including molecules susceptible to electrophilic attack and halogenation. Bromoperoxidase concentration dependence of the dearylation of APF to fluorescein. The APF assay cannot be used to detect iodoperoxidases (IPO) activity. The enzyme from Corallina officinalis is not active with iodide and chloride Corallina officinalis ? - - 89 1.11.1.18 additional information CPO is a haeme-thiolate peroxidase requiring the presence of H2O2 to form an activated enzymatic species, responsible for oxidising either halides or organic substrates. CPO catalyses the halogenation of estrogens at comparable rates to other aromatic compounds. See also EC 1.11.1.10 Leptoxyphium fumago ? - - 89 1.11.1.18 additional information H2O2 activation of the heme group. LC-MS/MS and gas chromatography-mass spectrometry (GC-MS) are used for product identification, overview. 2,2'-Dihyroxy-3,3',5,5'-tetrabromobiphenyl is also formed in the reactions, but is no substrate itself, no activity with 2,4,6-tribromophenol as a substrate. Evolution of BOC formation from phenol during CPO-mediated oxidation in the presence of bromide overview. Hydroxylated polybrominated diphenyl ethers (diOH-PBDEs) and hydroxylated polybrominated biphenyls (diOH-PBBs) formed by dihydroxyl group substitutions in the ortho-positions relative to the diphenyl ether bond or the single bond in biphenyl, may undergo intramolecular cyclization Leptoxyphium fumago ? - - 89 1.11.1.18 additional information positional specificity of oxidative hydroxybromination for olefins, using rBPO-A1 and PA in the presence of methanol, is higher compared to a non-enzymatic reaction using peracetic acid. The oxidative bromination step, occurring after the enzymatic peroxidation step, is suggested to be pseudoenzymatic. Non-enzymatic oxidative bromination's influence can be disregarded under acidic condition of pH 6.0 or lower because generation of a strongly brominating active species is not the rate-limiting step under acidic conditions Kitasatospora aureofaciens ? - - 89 1.11.1.18 additional information protein binding through the enzyme occurs primarily through hydrogen bridges and superimposed by Coulomb attraction according to thermochemical model on density functional level of theory. The strongest attractor is the arginine side chain mimic N-methylguanidinium, enhancing in positive cooperative manner hydrogen bridges toward weaker acceptors, such as residues from lysine and serine. Hydrogen peroxide activation occurs in the thermochemical model by side-on binding in orthovanadium peroxoic acid, oxidizing bromide with virtually no activation energy to hydrogen bonded hypobromous acid Ascophyllum nodosum ? - - 89 1.11.1.18 additional information the disproportionation reaction of hydrogen peroxide is a bromidemediated reaction, i.e. V-BPO does not catalyze the formation of singlet oxygen in the absence of bromide ions Ascophyllum nodosum ? - - 89 1.11.1.18 additional information vanadium containing bromoperoxidase mimicking (structural and/or functional) activities of vanadium(V) complexes has been reported by several groups in which the active site contains vanadium(V) coordinated to O/N donor ligands. Vanadium(V) complexes catalyze the oxidative bromination of organic substrates into useful halogenated organic compounds in the presence of halide and H2O2 in mild acid medium, just like natural VBrPO enzymes and hence, these are considered as models for VBrPO enzymes. Synthesis, crystal structure, DFT calculations, protein interaction, anticancer potential and bromoperoxidase mimicking activity of oxidoalkoxidovanadium(V) complexes: DFT calculations, protein interaction analysis, circular dichroism study, anticancer activity determination with MCF-7 cells, and determination of mitochondrial membrane potential (MMP) as well as intracellular reactive oxygen species (ROS) production, detailed overview Ascophyllum nodosum ? - - 89 1.11.1.18 additional information vanadium-dependent bromoperoxidases catalyze reactions involving peroxides and bromide or iodide ions Ascophyllum nodosum ? - - 89 1.11.1.18 additional information the natural brominated compound is dibromoacetaldehyde Kappaphycus alvarezii Doty ? - ? 89 1.11.1.18 additional information positional specificity of oxidative hydroxybromination for olefins, using rBPO-A1 and PA in the presence of methanol, is higher compared to a non-enzymatic reaction using peracetic acid. The oxidative bromination step, occurring after the enzymatic peroxidation step, is suggested to be pseudoenzymatic. Non-enzymatic oxidative bromination's influence can be disregarded under acidic condition of pH 6.0 or lower because generation of a strongly brominating active species is not the rate-limiting step under acidic conditions Kitasatospora aureofaciens ATCC 10762 ? - - 89 1.11.1.18 additional information assay method development and evaluation: assay for BrPO (and ClPO) activity, based on the fluorescent probe, [6-(4'-amino)phenoxy-3H-xanthen-3-on-9-yl]benzoic acid [aminophenyl fluorescein (APF)], designed to selectively detect highly reactive oxygen species (hROS), overview. APF-based assays are used in different applications: (i) quantify the BrPO activity in two different species of diatom, Porosira glacialis and Fragilariopsis cylindrus, and (ii) measure BrPO activity in planktonic communities of coastal waters and investigate the size-distribution and temporal change of enzyme rates. In the APF assay, the hypohalite that generates fluorescein will potentially also react with other organic compounds if they are present, including molecules susceptible to electrophilic attack and halogenation. Bromoperoxidase concentration dependence of the dearylation of APF to fluorescein. The APF assay cannot be used to detect iodoperoxidases (IPO) activity Porosira glacialis CCMP651 ? - - 89 1.11.1.18 additional information no substrate: chloride Synechococcus sp. CC9311 ? - ? 89 1.11.1.18 additional information no activity with Cl- Neopyropia yezoensis TU-1 ? - ? 89 1.11.1.18 additional information assay method development and evaluation: assay for BrPO (and ClPO) activity, based on the fluorescent probe, [6-(4'-amino)phenoxy-3H-xanthen-3-on-9-yl]benzoic acid [aminophenyl fluorescein (APF)], designed to selectively detect highly reactive oxygen species (hROS), overview. APF-based assays are used in different applications: (i) quantify the BrPO activity in two different species of diatom, Porosira glacialis and Fragilariopsis cylindrus, and (ii) measure BrPO activity in planktonic communities of coastal waters and investigate the size-distribution and temporal change of enzyme rates. In the APF assay, the hypohalite that generates fluorescein will potentially also react with other organic compounds if they are present, including molecules susceptible to electrophilic attack and halogenation. Bromoperoxidase concentration dependence of the dearylation of APF to fluorescein. The APF assay cannot be used to detect iodoperoxidases (IPO) activity Fragilariopsis cylindrus CCMP3323 ? - - 89 1.11.1.18 naringenin + chloride + H2O2 - Leptoxyphium fumago ? + 2 H2O - ? 461652 1.11.1.18 nerol + HBr + H2O2 - Kitasatospora aureofaciens ? + 2 H2O - ? 462827 1.11.1.18 phenol + bromide + H2O2 - Leptoxyphium fumago 4-bromophenol + 2 H2O - ? 462903 1.11.1.18 phenol + H2O2 + Br- - Cyclocybe aegerita 4-bromophenol + 2-bromophenol + H2O 4-bromophenol + 2-bromophenol at the ratio of 4:1 ? 389539 1.11.1.18 pyrene + chloride + H2O2 - Leptoxyphium fumago ? + 2 H2O - ? 461674 1.11.1.18 RH + Br- + H2O2 + H+ - Ascophyllum nodosum RBr + 2 H2O - ? 461679 1.11.1.18 RH + Br- + H2O2 + H+ - Corallina officinalis RBr + 2 H2O - ? 461679 1.11.1.18 RH + Br- + H2O2 + H+ - Fragilariopsis cylindrus RBr + 2 H2O - ? 461679 1.11.1.18 RH + Br- + H2O2 + H+ - Porosira glacialis RBr + 2 H2O - ? 461679 1.11.1.18 RH + Br- + H2O2 + H+ - Porosira glacialis CCMP651 RBr + 2 H2O - ? 461679 1.11.1.18 RH + Br- + H2O2 + H+ - Fragilariopsis cylindrus CCMP3323 RBr + 2 H2O - ? 461679 1.11.1.18 RH + bromide + H2O2 - Leptoxyphium fumago RBr + 2 H2O - ? 461680 1.11.1.18 RH + HBr + H2O2 - Ascophyllum nodosum RBr + 2 H2O - ? 461682 1.11.1.18 RH + HBr + H2O2 - Kitasatospora aureofaciens RBr + 2 H2O - ? 461682 1.11.1.18 RH + HBr + H2O2 - Kitasatospora aureofaciens ATCC 10762 RBr + 2 H2O - ? 461682 1.11.1.18 RH + I- + H2O2 + H+ - Ascophyllum nodosum RI + 2 H2O - ? 461683 1.11.1.18 taurine + Br- + peracetic acid - Macrocystis pyrifera bromotaurine + ? - ? 389848 1.11.1.18 taurine + Br- + peracetic acid - Fucus distichus bromotaurine + ? - ? 389848 1.11.1.18 Tes + Br- + peracetic acid - Macrocystis pyrifera ? - ? 389862 1.11.1.18 Tes + Br- + peracetic acid - Fucus distichus ? - ? 389862 1.11.1.18 thymol + chloride + H2O2 - Leptoxyphium fumago ? + 2 H2O - ? 461702 1.11.1.18 thymolsulfonphthalein + HBr + H2O2 - Corallina officinalis ? + 2 H2O - ? 463060 1.11.1.18 Tris + Br- + peracetic acid - Macrocystis pyrifera ? - ? 389927 1.11.1.18 Tris + Br- + peracetic acid - Fucus distichus ? - ? 389927 1.11.1.18 [6-(4'-amino)phenoxy-3H-xanthen-3-on-9-yl]benzoic acid + Br- + H2O2 + H+ - Fragilariopsis cylindrus ? + 2 H2O - ? 463104 1.11.1.18 [6-(4'-amino)phenoxy-3H-xanthen-3-on-9-yl]benzoic acid + Br- + H2O2 + H+ - Porosira glacialis ? + 2 H2O - ? 463104 1.11.1.18 [6-(4'-amino)phenoxy-3H-xanthen-3-on-9-yl]benzoic acid + Br- + H2O2 + H+ the conversion of non-fluorescent APF to fluorescein through the production of HOBr by V-BrPO of is shown by increases in fluorescence following the addition of H2O2 to the enzyme assay mixture at approximately 50 s after initiation of data collection Corallina officinalis ? + 2 H2O - ? 463104 1.11.1.18 [6-(4'-amino)phenoxy-3H-xanthen-3-on-9-yl]benzoic acid + Br- + H2O2 + H+ - Porosira glacialis CCMP651 ? + 2 H2O - ? 463104 1.11.1.18 [6-(4'-amino)phenoxy-3H-xanthen-3-on-9-yl]benzoic acid + Br- + H2O2 + H+ - Fragilariopsis cylindrus CCMP3323 ? + 2 H2O - ? 463104