evolution
emzyme PsEFE should be regarded as a hybrid of subgroups I and II, in terms of its classification
evolution
enzyme EFE is a member of the mononuclear non-heme Fe(II)- and 2-oxoglutarate (2OG)-dependent oxygenase superfamily. It contains a double-stranded beta-helix (DSBH, also known as the jellyroll or cupin fold) core typically found in members of the Fe(II)/2OG-dependent oxygenases
evolution
ethylene-forming enzyme (EFE) is a member of the mononuclear non-heme Fe(II)- and 2-oxoglutarate (2OG)-dependent oxygenase superfamily
evolution
the enzyme belongs to a subclass of 2-oxoglutarate/Fe(II) dependent dioxygenases, structure-function analysis of the ethylene forming subclass of 2-oxoglutarate/Fe(II)-dependent dioxygenases, overview
evolution
the enzyme belongs to a subclass of 2-oxoglutarate/Fe(II) dependent dioxygenases, structure-function analysis of the ethylene forming subclass of 2-oxoglutarate/Fe(II)-dependent dioxygenases,overview
metabolism
analysis enzyme EFE reaction and cellular carbon flux, overview
more
three of the amino acids correlating with ethylene production are located in the predicted 2-oxoglutarate binding domain, a protein domain specific for the EFE-class that is essential for activity. Residues H189, D191 and H268 are responsible for binding the Fe(II) ligand
physiological function
a non-heme Fe(II)- and 2-oxoglutarate-dependent ethylene-forming enzyme, EFE converts 2-oxoglutarate into ethylene plus three CO2 molecules while also catalyzing the C5 hydroxylation of L-arginine driven by the oxidative decarboxylation of 2-oxoglutarate to form succinate and CO2
physiological function
in the presence of O2, the enzyme catalyzes ethylene formation from the substrates 2-oxoglutarate and L-arginine
physiological function
the enzyme is reported to simultaneously catalyze the conversion of 2OG into ethylene plus three CO2 and the Cdelta hydroxylation of L-arginine (L-Arg) while oxidatively decarboxylating 2OG to form succinate and carbon dioxide. The enzyme produces ethylene, a gas that is widely used as a building block in the production of various plastics, detergents, surfactants, antifreeze, solvents, and other important industrial materials. And ethylene is a plant hormone that plays an important role in growth and development. The ethylene-forming reaction is not intrinsically linked to L-Arg hydroxylation