BRENDA - Enzyme Database show
show all sequences of 1.3.7.12

Chlorophyll breakdown in higher plants and algae

Hoertensteiner, S.; Cell. Mol. Life Sci. 56, 330-347 (1999)

Data extracted from this reference:

Inhibitors
Inhibitors
Commentary
Organism
Structure
O2
RCC reductase is sensitive towards oxygen, in vitro primary fluorescent chlorophyll catabolite formation from red chlorophyll catabolite occurs only under anoxic conditions
Brassica napus
O2
RCC reductase is sensitive towards oxygen, in vitro primary fluorescent chlorophyll catabolite formation from red chlorophyll catabolite occurs only under anoxic conditions
Capsicum annuum
O2
RCC reductase is sensitive towards oxygen, in vitro primary fluorescent chlorophyll catabolite formation from red chlorophyll catabolite occurs only under anoxic conditions
Festuca pratensis
O2
RCC reductase is sensitive towards oxygen, in vitro primary fluorescent chlorophyll catabolite formation from red chlorophyll catabolite occurs only under anoxic conditions
Hordeum vulgare
O2
RCC reductase is sensitive towards oxygen, in vitro primary fluorescent chlorophyll catabolite formation from red chlorophyll catabolite occurs only under anoxic conditions
Phaseolus vulgaris
Localization
Localization
Commentary
Organism
GeneOntology No.
Textmining
chloroplast stroma
RCC reductase is a soluble protein of the stroma
Brassica napus
9570
-
chloroplast stroma
RCC reductase is a soluble protein of the stroma
Festuca pratensis
9570
-
chloroplast stroma
RCC reductase is a soluble protein of the stroma
Hordeum vulgare
9570
-
gerontoplast
RCC reductase is a soluble protein of the stroma
Hordeum vulgare
34400
-
gerontoplast stroma
RCC reductase is a soluble protein of the stroma
Brassica napus
-
-
gerontoplast stroma
RCC reductase is a soluble protein of the stroma
Festuca pratensis
-
-
Metals/Ions
Metals/Ions
Commentary
Organism
Structure
Fe2+
in iron sulfur cluster
Auxenochlorella protothecoides
Fe2+
in iron sulfur cluster
Brassica napus
Fe2+
in iron sulfur cluster
Capsicum annuum
Fe2+
in iron sulfur cluster
Festuca pratensis
Fe2+
in iron sulfur cluster
Hordeum vulgare
Fe2+
in iron sulfur cluster
Parachlorella kessleri
Fe2+
in iron sulfur cluster
Phaseolus vulgaris
iron sulfur cluster
-
Auxenochlorella protothecoides
iron sulfur cluster
-
Festuca pratensis
iron sulfur cluster
-
Hordeum vulgare
iron sulfur cluster
-
Parachlorella kessleri
iron sulfur cluster
-
Phaseolus vulgaris
iron sulfur cluster
-
Brassica napus
iron sulfur cluster
-
Capsicum annuum
Natural Substrates/ Products (Substrates)
Natural Substrates
Organism
Commentary (Nat. Sub.)
Natural Products
Commentary (Nat. Pro.)
Organism (Nat. Pro.)
Reversibility
additional information
Brassica napus
in pFCC-1 of Brassica napus as well as in Chlorella protothecoides 18O is only found in the formyl group of pyrrole B, and hence the respective enzymes are monooxygenases. The lactam oxygen in pyrrole A is most probably derived from H2O
?
-
-
-
additional information
Auxenochlorella protothecoides
in pFCC-1 of Brassica napus as well as in Chlorella protothecoides 18O is only found in the formyl group of pyrrole B, and the respective enzymes are monooxygenases. The lactam oxygen in pyrrole A is most probably derived from H2O
?
-
-
-
red chlorophyll catabolite + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+
Phaseolus vulgaris
-
primary fluorescent chlorophyll catabolite + 2 oxidized ferredoxin [iron-sulfur] cluster
-
-
?
red chlorophyll catabolite + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+
Capsicum annuum
-
primary fluorescent chlorophyll catabolite + 2 oxidized ferredoxin [iron-sulfur] cluster
-
-
?
red chlorophyll catabolite + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+
Festuca pratensis
-
primary fluorescent chlorophyll catabolite + 2 oxidized ferredoxin [iron-sulfur] cluster
-
-
?
red chlorophyll catabolite + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+
Hordeum vulgare
-
primary fluorescent chlorophyll catabolite + 2 oxidized ferredoxin [iron-sulfur] cluster
-
-
?
red chlorophyll catabolite + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+
Auxenochlorella protothecoides
in Chlorella, the release of red pigments is correlated with the loss of chlorophyll only if the cells are kept in the dark. These pigments are neither produced in light-grown cells nor in the dark if a source of nitrogen is provided
primary fluorescent chlorophyll catabolite + 2 oxidized ferredoxin [iron-sulfur] cluster
-
-
?
red chlorophyll catabolite + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+
Parachlorella kessleri
in Chlorella, the release of red pigments is correlated with the loss of chlorophyll only if the cells are kept in the dark. These pigments are neither produced in light-grown cells nor in the dark if a source of nitrogen is provided
primary fluorescent chlorophyll catabolite + 2 oxidized ferredoxin [iron-sulfur] cluster
-
-
?
red chlorophyll catabolite + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+
Brassica napus
two atoms of oxygen are introduced into RCC, pFCC-1 and the corresponding red catabolites of Chlorella protothecoides and production of pFCC-1 from Pheide a requires dioxygen
primary fluorescent chlorophyll catabolite + 2 oxidized ferredoxin [iron-sulfur] cluster
-
-
?
Organism
Organism
Primary Accession No. (UniProt)
Commentary
Textmining
Auxenochlorella protothecoides
-
gene RCCR
-
Brassica napus
-
gene RCCR
-
Capsicum annuum
-
gene RCCR
-
Festuca pratensis
-
gene RCCR
-
Parachlorella kessleri
-
gene RCCR
-
Phaseolus vulgaris
-
gene RCCR
-
Hordeum vulgare
Q9MTQ6
gene RCCR
-
Oxidation Stability
Oxidation Stability
Organism
RCC reductase is sensitive towards oxygen, in vitro primary fluorescent chlorophyll catabolite formation from red chlorophyll catabolite occurs only under anoxic conditions
Phaseolus vulgaris
RCC reductase is sensitive towards oxygen, in vitro primary fluorescent chlorophyll catabolite formation from red chlorophyll catabolite occurs only under anoxic conditions
Brassica napus
RCC reductase is sensitive towards oxygen, in vitro primary fluorescent chlorophyll catabolite formation from red chlorophyll catabolite occurs only under anoxic conditions
Capsicum annuum
RCC reductase is sensitive towards oxygen, in vitro primary fluorescent chlorophyll catabolite formation from red chlorophyll catabolite occurs only under anoxic conditions
Festuca pratensis
RCC reductase is sensitive towards oxygen, in vitro primary fluorescent chlorophyll catabolite formation from red chlorophyll catabolite occurs only under anoxic conditions
Hordeum vulgare
Purification (Commentary)
Commentary
Organism
from senescent barley leaves to homogeneity
Hordeum vulgare
Reaction
Reaction
Commentary
Organism
primary fluorescent chlorophyll catabolite + 2 oxidized ferredoxin [iron-sulfur] cluster = red chlorophyll catabolite + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+
reaction pathway overview
Auxenochlorella protothecoides
primary fluorescent chlorophyll catabolite + 2 oxidized ferredoxin [iron-sulfur] cluster = red chlorophyll catabolite + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+
reaction pathway overview
Brassica napus
primary fluorescent chlorophyll catabolite + 2 oxidized ferredoxin [iron-sulfur] cluster = red chlorophyll catabolite + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+
reaction pathway overview
Capsicum annuum
primary fluorescent chlorophyll catabolite + 2 oxidized ferredoxin [iron-sulfur] cluster = red chlorophyll catabolite + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+
reaction pathway overview
Festuca pratensis
primary fluorescent chlorophyll catabolite + 2 oxidized ferredoxin [iron-sulfur] cluster = red chlorophyll catabolite + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+
reaction pathway overview
Hordeum vulgare
primary fluorescent chlorophyll catabolite + 2 oxidized ferredoxin [iron-sulfur] cluster = red chlorophyll catabolite + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+
reaction pathway overview
Parachlorella kessleri
primary fluorescent chlorophyll catabolite + 2 oxidized ferredoxin [iron-sulfur] cluster = red chlorophyll catabolite + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+
reaction pathway overview
Phaseolus vulgaris
Source Tissue
Source Tissue
Commentary
Organism
Textmining
cell culture
in Chlorella, the release of red pigments is correlated with the loss of chlorophyll only if the cells are kept in the dark. These pigments are neither produced in light-grown cells nor in the dark if a source of nitrogen is provided
Parachlorella kessleri
-
cotyledon
senescent cotyledons
Brassica napus
-
leaf
senescent
Festuca pratensis
-
leaf
senescent
Hordeum vulgare
-
additional information
in Chlorella, the release of red pigments is correlated with the loss of chlorophyll only if the cells are kept in the dark. These pigments are neither produced in light-grown cells nor in the dark if a source of nitrogen is provided
Auxenochlorella protothecoides
-
Substrates and Products (Substrate)
Substrates
Commentary Substrates
Literature (Substrates)
Organism
Products
Commentary (Products)
Literature (Products)
Organism (Products)
Reversibility
additional information
in pFCC-1 of Brassica napus as well as in Chlorella protothecoides 18O is only found in the formyl group of pyrrole B, and hence the respective enzymes are monooxygenases. The lactam oxygen in pyrrole A is most probably derived from H2O
735913
Brassica napus
?
-
-
-
-
additional information
in pFCC-1 of Brassica napus as well as in Chlorella protothecoides 18O is only found in the formyl group of pyrrole B, and the respective enzymes are monooxygenases. The lactam oxygen in pyrrole A is most probably derived from H2O
735913
Auxenochlorella protothecoides
?
-
-
-
-
red chlorophyll catabolite + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+
-
735913
Phaseolus vulgaris
primary fluorescent chlorophyll catabolite + 2 oxidized ferredoxin [iron-sulfur] cluster
-
-
-
?
red chlorophyll catabolite + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+
-
735913
Capsicum annuum
primary fluorescent chlorophyll catabolite + 2 oxidized ferredoxin [iron-sulfur] cluster
-
-
-
?
red chlorophyll catabolite + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+
-
735913
Parachlorella kessleri
primary fluorescent chlorophyll catabolite + 2 oxidized ferredoxin [iron-sulfur] cluster
-
-
-
?
red chlorophyll catabolite + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+
-
735913
Festuca pratensis
primary fluorescent chlorophyll catabolite + 2 oxidized ferredoxin [iron-sulfur] cluster
-
-
-
?
red chlorophyll catabolite + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+
-
735913
Hordeum vulgare
primary fluorescent chlorophyll catabolite + 2 oxidized ferredoxin [iron-sulfur] cluster
-
-
-
?
red chlorophyll catabolite + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+
in Chlorella, the release of red pigments is correlated with the loss of chlorophyll only if the cells are kept in the dark. These pigments are neither produced in light-grown cells nor in the dark if a source of nitrogen is provided
735913
Auxenochlorella protothecoides
primary fluorescent chlorophyll catabolite + 2 oxidized ferredoxin [iron-sulfur] cluster
-
-
-
?
red chlorophyll catabolite + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+
in Chlorella, the release of red pigments is correlated with the loss of chlorophyll only if the cells are kept in the dark. These pigments are neither produced in light-grown cells nor in the dark if a source of nitrogen is provided
735913
Parachlorella kessleri
primary fluorescent chlorophyll catabolite + 2 oxidized ferredoxin [iron-sulfur] cluster
-
-
-
?
red chlorophyll catabolite + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+
two atoms of oxygen are introduced into RCC, pFCC-1 and the corresponding red catabolites of Chlorella protothecoides and production of pFCC-1 from Pheide a requires dioxygen
735913
Brassica napus
primary fluorescent chlorophyll catabolite + 2 oxidized ferredoxin [iron-sulfur] cluster
-
-
-
?
red chlorophyll catabolite + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+
two atoms of oxygen are introduced into RCC, pFCC-1 and the corresponding red catabolites of Chlorella protothecoides and production of pFCC-1 from Pheide a requires dioxygen
735913
Auxenochlorella protothecoides
primary fluorescent chlorophyll catabolite + 2 oxidized ferredoxin [iron-sulfur] cluster
-
-
-
?
red chlorophyll catabolite + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+
stereospecificity towards reduction of C1
735913
Phaseolus vulgaris
primary fluorescent chlorophyll catabolite + 2 oxidized ferredoxin [iron-sulfur] cluster
-
-
-
?
red chlorophyll catabolite + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+
stereospecificity towards reduction of C1
735913
Festuca pratensis
primary fluorescent chlorophyll catabolite + 2 oxidized ferredoxin [iron-sulfur] cluster
-
-
-
?
red chlorophyll catabolite + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+
stereospecificity towards reduction of C1
735913
Hordeum vulgare
primary fluorescent chlorophyll catabolite + 2 oxidized ferredoxin [iron-sulfur] cluster
three products identified as pFCC-1 and pFCC-2, that have identical constitutions but differ in the absolute configuration at C1, and pFCC-3 with undetermined structure
-
-
?
red chlorophyll catabolite + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+
stereospecificity towards reduction of C1
735913
Capsicum annuum
primary fluorescent chlorophyll catabolite + 2 oxidized ferredoxin [iron-sulfur] cluster
two products identified as pFCC-1 and pFCC-2, that have identical constitutions but differ in the absolute configuration at C1
-
-
?
red chlorophyll catabolite + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+
two atoms of oxygen are introduced into RCC, pFCC-1 and the corresponding red catabolites of Chlorella protothecoides and production of pFCC-1 from Pheide a requires dioxygen, stereospecificity towards reduction of C1
735913
Brassica napus
primary fluorescent chlorophyll catabolite + 2 oxidized ferredoxin [iron-sulfur] cluster
-
-
-
?
Cofactor
Cofactor
Commentary
Organism
Structure
Ferredoxin
-
Auxenochlorella protothecoides
Ferredoxin
-
Festuca pratensis
Ferredoxin
-
Hordeum vulgare
Ferredoxin
-
Parachlorella kessleri
Ferredoxin
-
Phaseolus vulgaris
Ferredoxin
-
Capsicum annuum
Ferredoxin
-
Brassica napus
Cofactor (protein specific)
Cofactor
Commentary
Organism
Structure
Ferredoxin
-
Auxenochlorella protothecoides
Ferredoxin
-
Brassica napus
Ferredoxin
-
Capsicum annuum
Ferredoxin
-
Festuca pratensis
Ferredoxin
-
Hordeum vulgare
Ferredoxin
-
Parachlorella kessleri
Ferredoxin
-
Phaseolus vulgaris
Inhibitors (protein specific)
Inhibitors
Commentary
Organism
Structure
O2
RCC reductase is sensitive towards oxygen, in vitro primary fluorescent chlorophyll catabolite formation from red chlorophyll catabolite occurs only under anoxic conditions
Brassica napus
O2
RCC reductase is sensitive towards oxygen, in vitro primary fluorescent chlorophyll catabolite formation from red chlorophyll catabolite occurs only under anoxic conditions
Capsicum annuum
O2
RCC reductase is sensitive towards oxygen, in vitro primary fluorescent chlorophyll catabolite formation from red chlorophyll catabolite occurs only under anoxic conditions
Festuca pratensis
O2
RCC reductase is sensitive towards oxygen, in vitro primary fluorescent chlorophyll catabolite formation from red chlorophyll catabolite occurs only under anoxic conditions
Hordeum vulgare
O2
RCC reductase is sensitive towards oxygen, in vitro primary fluorescent chlorophyll catabolite formation from red chlorophyll catabolite occurs only under anoxic conditions
Phaseolus vulgaris
Localization (protein specific)
Localization
Commentary
Organism
GeneOntology No.
Textmining
chloroplast stroma
RCC reductase is a soluble protein of the stroma
Brassica napus
9570
-
chloroplast stroma
RCC reductase is a soluble protein of the stroma
Festuca pratensis
9570
-
chloroplast stroma
RCC reductase is a soluble protein of the stroma
Hordeum vulgare
9570
-
gerontoplast
RCC reductase is a soluble protein of the stroma
Hordeum vulgare
34400
-
gerontoplast stroma
RCC reductase is a soluble protein of the stroma
Brassica napus
-
-
gerontoplast stroma
RCC reductase is a soluble protein of the stroma
Festuca pratensis
-
-
Metals/Ions (protein specific)
Metals/Ions
Commentary
Organism
Structure
Fe2+
in iron sulfur cluster
Auxenochlorella protothecoides
Fe2+
in iron sulfur cluster
Brassica napus
Fe2+
in iron sulfur cluster
Capsicum annuum
Fe2+
in iron sulfur cluster
Festuca pratensis
Fe2+
in iron sulfur cluster
Hordeum vulgare
Fe2+
in iron sulfur cluster
Parachlorella kessleri
Fe2+
in iron sulfur cluster
Phaseolus vulgaris
iron sulfur cluster
-
Auxenochlorella protothecoides
iron sulfur cluster
-
Brassica napus
iron sulfur cluster
-
Capsicum annuum
iron sulfur cluster
-
Festuca pratensis
iron sulfur cluster
-
Hordeum vulgare
iron sulfur cluster
-
Parachlorella kessleri
iron sulfur cluster
-
Phaseolus vulgaris
Natural Substrates/ Products (Substrates) (protein specific)
Natural Substrates
Organism
Commentary (Nat. Sub.)
Natural Products
Commentary (Nat. Pro.)
Organism (Nat. Pro.)
Reversibility
additional information
Brassica napus
in pFCC-1 of Brassica napus as well as in Chlorella protothecoides 18O is only found in the formyl group of pyrrole B, and hence the respective enzymes are monooxygenases. The lactam oxygen in pyrrole A is most probably derived from H2O
?
-
-
-
additional information
Auxenochlorella protothecoides
in pFCC-1 of Brassica napus as well as in Chlorella protothecoides 18O is only found in the formyl group of pyrrole B, and the respective enzymes are monooxygenases. The lactam oxygen in pyrrole A is most probably derived from H2O
?
-
-
-
red chlorophyll catabolite + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+
Phaseolus vulgaris
-
primary fluorescent chlorophyll catabolite + 2 oxidized ferredoxin [iron-sulfur] cluster
-
-
?
red chlorophyll catabolite + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+
Capsicum annuum
-
primary fluorescent chlorophyll catabolite + 2 oxidized ferredoxin [iron-sulfur] cluster
-
-
?
red chlorophyll catabolite + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+
Festuca pratensis
-
primary fluorescent chlorophyll catabolite + 2 oxidized ferredoxin [iron-sulfur] cluster
-
-
?
red chlorophyll catabolite + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+
Hordeum vulgare
-
primary fluorescent chlorophyll catabolite + 2 oxidized ferredoxin [iron-sulfur] cluster
-
-
?
red chlorophyll catabolite + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+
Auxenochlorella protothecoides
in Chlorella, the release of red pigments is correlated with the loss of chlorophyll only if the cells are kept in the dark. These pigments are neither produced in light-grown cells nor in the dark if a source of nitrogen is provided
primary fluorescent chlorophyll catabolite + 2 oxidized ferredoxin [iron-sulfur] cluster
-
-
?
red chlorophyll catabolite + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+
Parachlorella kessleri
in Chlorella, the release of red pigments is correlated with the loss of chlorophyll only if the cells are kept in the dark. These pigments are neither produced in light-grown cells nor in the dark if a source of nitrogen is provided
primary fluorescent chlorophyll catabolite + 2 oxidized ferredoxin [iron-sulfur] cluster
-
-
?
red chlorophyll catabolite + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+
Brassica napus
two atoms of oxygen are introduced into RCC, pFCC-1 and the corresponding red catabolites of Chlorella protothecoides and production of pFCC-1 from Pheide a requires dioxygen
primary fluorescent chlorophyll catabolite + 2 oxidized ferredoxin [iron-sulfur] cluster
-
-
?
Oxidation Stability (protein specific)
Oxidation Stability
Organism
RCC reductase is sensitive towards oxygen, in vitro primary fluorescent chlorophyll catabolite formation from red chlorophyll catabolite occurs only under anoxic conditions
Phaseolus vulgaris
RCC reductase is sensitive towards oxygen, in vitro primary fluorescent chlorophyll catabolite formation from red chlorophyll catabolite occurs only under anoxic conditions
Brassica napus
RCC reductase is sensitive towards oxygen, in vitro primary fluorescent chlorophyll catabolite formation from red chlorophyll catabolite occurs only under anoxic conditions
Capsicum annuum
RCC reductase is sensitive towards oxygen, in vitro primary fluorescent chlorophyll catabolite formation from red chlorophyll catabolite occurs only under anoxic conditions
Festuca pratensis
RCC reductase is sensitive towards oxygen, in vitro primary fluorescent chlorophyll catabolite formation from red chlorophyll catabolite occurs only under anoxic conditions
Hordeum vulgare
Purification (Commentary) (protein specific)
Commentary
Organism
from senescent barley leaves to homogeneity
Hordeum vulgare
Source Tissue (protein specific)
Source Tissue
Commentary
Organism
Textmining
cell culture
in Chlorella, the release of red pigments is correlated with the loss of chlorophyll only if the cells are kept in the dark. These pigments are neither produced in light-grown cells nor in the dark if a source of nitrogen is provided
Parachlorella kessleri
-
cotyledon
senescent cotyledons
Brassica napus
-
leaf
senescent
Festuca pratensis
-
leaf
senescent
Hordeum vulgare
-
additional information
in Chlorella, the release of red pigments is correlated with the loss of chlorophyll only if the cells are kept in the dark. These pigments are neither produced in light-grown cells nor in the dark if a source of nitrogen is provided
Auxenochlorella protothecoides
-
Substrates and Products (Substrate) (protein specific)
Substrates
Commentary Substrates
Literature (Substrates)
Organism
Products
Commentary (Products)
Literature (Products)
Organism (Products)
Reversibility
additional information
in pFCC-1 of Brassica napus as well as in Chlorella protothecoides 18O is only found in the formyl group of pyrrole B, and hence the respective enzymes are monooxygenases. The lactam oxygen in pyrrole A is most probably derived from H2O
735913
Brassica napus
?
-
-
-
-
additional information
in pFCC-1 of Brassica napus as well as in Chlorella protothecoides 18O is only found in the formyl group of pyrrole B, and the respective enzymes are monooxygenases. The lactam oxygen in pyrrole A is most probably derived from H2O
735913
Auxenochlorella protothecoides
?
-
-
-
-
red chlorophyll catabolite + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+
-
735913
Phaseolus vulgaris
primary fluorescent chlorophyll catabolite + 2 oxidized ferredoxin [iron-sulfur] cluster
-
-
-
?
red chlorophyll catabolite + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+
-
735913
Capsicum annuum
primary fluorescent chlorophyll catabolite + 2 oxidized ferredoxin [iron-sulfur] cluster
-
-
-
?
red chlorophyll catabolite + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+
-
735913
Parachlorella kessleri
primary fluorescent chlorophyll catabolite + 2 oxidized ferredoxin [iron-sulfur] cluster
-
-
-
?
red chlorophyll catabolite + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+
-
735913
Festuca pratensis
primary fluorescent chlorophyll catabolite + 2 oxidized ferredoxin [iron-sulfur] cluster
-
-
-
?
red chlorophyll catabolite + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+
-
735913
Hordeum vulgare
primary fluorescent chlorophyll catabolite + 2 oxidized ferredoxin [iron-sulfur] cluster
-
-
-
?
red chlorophyll catabolite + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+
in Chlorella, the release of red pigments is correlated with the loss of chlorophyll only if the cells are kept in the dark. These pigments are neither produced in light-grown cells nor in the dark if a source of nitrogen is provided
735913
Auxenochlorella protothecoides
primary fluorescent chlorophyll catabolite + 2 oxidized ferredoxin [iron-sulfur] cluster
-
-
-
?
red chlorophyll catabolite + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+
in Chlorella, the release of red pigments is correlated with the loss of chlorophyll only if the cells are kept in the dark. These pigments are neither produced in light-grown cells nor in the dark if a source of nitrogen is provided
735913
Parachlorella kessleri
primary fluorescent chlorophyll catabolite + 2 oxidized ferredoxin [iron-sulfur] cluster
-
-
-
?
red chlorophyll catabolite + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+
two atoms of oxygen are introduced into RCC, pFCC-1 and the corresponding red catabolites of Chlorella protothecoides and production of pFCC-1 from Pheide a requires dioxygen
735913
Brassica napus
primary fluorescent chlorophyll catabolite + 2 oxidized ferredoxin [iron-sulfur] cluster
-
-
-
?
red chlorophyll catabolite + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+
two atoms of oxygen are introduced into RCC, pFCC-1 and the corresponding red catabolites of Chlorella protothecoides and production of pFCC-1 from Pheide a requires dioxygen
735913
Auxenochlorella protothecoides
primary fluorescent chlorophyll catabolite + 2 oxidized ferredoxin [iron-sulfur] cluster
-
-
-
?
red chlorophyll catabolite + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+
stereospecificity towards reduction of C1
735913
Phaseolus vulgaris
primary fluorescent chlorophyll catabolite + 2 oxidized ferredoxin [iron-sulfur] cluster
-
-
-
?
red chlorophyll catabolite + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+
stereospecificity towards reduction of C1
735913
Festuca pratensis
primary fluorescent chlorophyll catabolite + 2 oxidized ferredoxin [iron-sulfur] cluster
-
-
-
?
red chlorophyll catabolite + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+
stereospecificity towards reduction of C1
735913
Hordeum vulgare
primary fluorescent chlorophyll catabolite + 2 oxidized ferredoxin [iron-sulfur] cluster
three products identified as pFCC-1 and pFCC-2, that have identical constitutions but differ in the absolute configuration at C1, and pFCC-3 with undetermined structure
-
-
?
red chlorophyll catabolite + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+
stereospecificity towards reduction of C1
735913
Capsicum annuum
primary fluorescent chlorophyll catabolite + 2 oxidized ferredoxin [iron-sulfur] cluster
two products identified as pFCC-1 and pFCC-2, that have identical constitutions but differ in the absolute configuration at C1
-
-
?
red chlorophyll catabolite + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+
two atoms of oxygen are introduced into RCC, pFCC-1 and the corresponding red catabolites of Chlorella protothecoides and production of pFCC-1 from Pheide a requires dioxygen, stereospecificity towards reduction of C1
735913
Brassica napus
primary fluorescent chlorophyll catabolite + 2 oxidized ferredoxin [iron-sulfur] cluster
-
-
-
?
General Information
General Information
Commentary
Organism
evolution
RCC reductase activity can be demonstrated in mono- as well as in dicotyledons, and is also found in pteridophytes and gymnosperms. Within a plant family RCC reductases from different genera and species have the same stereospecificity
Brassica napus
evolution
RCC reductase activity can be demonstrated in mono- as well as in dicotyledons, and is also found in pteridophytes and gymnosperms. Within a plant family RCC reductases from different genera and species have the same stereospecificity
Capsicum annuum
evolution
RCC reductase activity can be demonstrated in mono- as well as in dicotyledons, and is also found in pteridophytes and gymnosperms. Within a plant family RCC reductases from different genera and species have the same stereospecificity
Festuca pratensis
evolution
RCC reductase activity can be demonstrated in mono- as well as in dicotyledons, and is also found in pteridophytes and gymnosperms. Within a plant family RCC reductases from different genera and species have the same stereospecificity
Hordeum vulgare
evolution
RCC reductase activity can be demonstrated in mono- as well as in dicotyledons, and is also found in pteridophytes and gymnosperms. Within a plant family RCC reductases from different genera and species have the same stereospecificity
Phaseolus vulgaris
metabolism
the oxygenase catalyzing porphyrin cleavage is a monooxygenase. In Chlorella, a mechanism with intermediary formation of a C4:C5 epoxide and subsequent hydrolytic cleavage and prototropic rearrangements has been proposed. Thereby, the second rearrangement at C10 has been demonstrated to be highly stereoselective. Two atoms of oxygen are introduced into RCC, pFCC-1 and the corresponding red catabolites of Chlorella protothecoides and production of pFCC-1 from Pheide a requires dioxygen. After hydroxylation and additional species-specific modifications, in Chlorella, the final degradation products of chlorophyll are excreted into the surrounding medium, whereas in higher plants they are deposited in the vacuoles of mesophyll cells. Occurrence of catabolites of both Chl a and b in Chlorella. In Chlorella porphyrin cleavage does not require the joint action of a monooxygenase and a reductase as is the case in higher plants
Auxenochlorella protothecoides
metabolism
leaf senescence is accompanied by the metabolism of chlorophyll (Chl) to nonfluorescent catabolites (NCCs). The pathway of Chl degradation comprises several reactions and includes the occurrence of intermediary catabolites. After removal of phytol and the central Mg atom from Chl by chlorophyllase and Mg dechelatase, respectively, the porphyrin macrocycle of pheophorbide (Pheide) a is cleaved. This two-step reaction is catalyzed by Pheide a oxygenase and RCC reductase and yields a primary fluorescent catabolite (pFCC). Two atoms of oxygen are introduced into RCC, pFCC-1 and the corresponding red catabolites of Chlorella protothecoides and production of pFCC-1 from Pheide a requires dioxygen. After hydroxylation and additional species-specific modifications, FCCs are tautomerized nonenzymically to NCCs inside the vacuole
Brassica napus
metabolism
leaf senescence is accompanied by the metabolism of chlorophyll to nonfluorescent catabolites (NCCs). The pathway of chlorophyll degradation comprises several reactions and includes the occurrence of intermediary catabolites. After removal of phytol and the central Mg atom from chlorophyll by chlorophyllase and Mg dechelatase, respectively, the porphyrin macrocycle of pheophorbide (Pheide) a is cleaved. This two-step reaction is catalyzed by Pheide a oxygenase and RCC reductase and yields a primary fluorescent catabolite (pFCC). After hydroxylation and additional species-specific modifications, FCCs are tautomerized nonenzymically to NCCs inside the vacuole
Capsicum annuum
metabolism
leaf senescence is accompanied by the metabolism of chlorophyll (Chl) to nonfluorescent catabolites (NCCs). The pathway of Chl degradation comprises several reactions and includes the occurrence of intermediary catabolites. After removal of phytol and the central Mg atom from Chl by chlorophyllase and Mg dechelatase, respectively, the porphyrin macrocycle of pheophorbide (Pheide) a is cleaved. This two-step reaction is catalyzed by Pheide a oxygenase and RCC reductase and yields a primary fluorescent catabolite (pFCC). After hydroxylation and additional species-specific modifications, FCCs are tautomerized nonenzymically to NCCs inside the vacuole
Festuca pratensis
metabolism
leaf senescence is accompanied by the metabolism of chlorophyll to nonfluorescent catabolites (NCCs). The pathway of chlorophyll degradation comprises several reactions and includes the occurrence of intermediary catabolites. After removal of phytol and the central Mg atom from chlorophyll by chlorophyllase and Mg dechelatase, respectively, the porphyrin macrocycle of pheophorbide (Pheide) a is cleaved. This two-step reaction is catalyzed by Pheide a oxygenase and RCC reductase and yields a primary fluorescent catabolite (pFCC). After hydroxylation and additional species-specific modifications, FCCs are tautomerized nonenzymically to NCCs inside the vacuole
Hordeum vulgare
metabolism
leaf senescence is accompanied by the metabolism of chlorophyll (Chl) to nonfluorescent catabolites (NCCs). The pathway of Chl degradation comprises several reactions and includes the occurrence of intermediary catabolites. After removal of phytol and the central Mg atom from Chl by chlorophyllase and Mg dechelatase, respectively, the porphyrin macrocycle of pheophorbide (Pheide) a is cleaved. This two-step reaction is catalyzed by Pheide a oxygenase and RCC reductase and yields a primary fluorescent catabolite (pFCC). After hydroxylation and additional species-specific modifications, in Chlorella, the final degradation products of chlorophyll are excreted into the surrounding medium, whereas in higher plants they are deposited in the vacuoles of mesophyll cells. Occurrence of catabolites of both Chl a and b in Chlorella. In Chlorella porphyrin cleavage does not require the joint action of a monooxygenase and a reductase as is the case in higher plants
Parachlorella kessleri
metabolism
leaf senescence is accompanied by the metabolism of chlorophyll to nonfluorescent catabolites (NCCs). The pathway of chlorophyll degradation comprises several reactions and includes the occurrence of intermediary catabolites. After removal of phytol and the central Mg atom from chlorophyll by chlorophyllase and Mg dechelatase, respectively, the porphyrin macrocycle of pheophorbide (Pheide) a is cleaved. This two-step reaction is catalyzed by Pheide a oxygenase and RCC reductase and yields a primary fluorescent catabolite (pFCC). After hydroxylation and additional species-specific modifications, FCCs are tautomerized nonenzymically to NCCs inside the vacuole
Phaseolus vulgaris
additional information
in contrast to the enzyme's O2 sensitivity, the coupled in vitro assay (formation of pFCC from Pheide a) requires oxygen for incorporation into the substrate. In the metabolic channelling of the two partial reactions, PaO creates an oxygen-depleted microenvironment which allows the action of RCC reductase
Brassica napus
additional information
in contrast to the enzyme's O2 sensitivity, the coupled in vitro assay (formation of pFCC from Pheide a) requires oxygen for incorporation into the substrate. In the metabolic channelling of the two partial reactions, PaO creates an oxygen-depleted microenvironment which allows the action of RCC reductase
Capsicum annuum
additional information
in contrast to the enzyme's O2 sensitivity, the coupled in vitro assay (formation of pFCC from Pheide a) requires oxygen for incorporation into the substrate. In the metabolic channelling of the two partial reactions, PaO creates an oxygen-depleted microenvironment which allows the action of RCC reductase
Festuca pratensis
additional information
in contrast to the enzyme's O2 sensitivity, the coupled in vitro assay (formation of pFCC from Pheide a) requires oxygen for incorporation into the substrate. In the metabolic channelling of the two partial reactions, PaO creates an oxygen-depleted microenvironment which allows the action of RCC reductase
Hordeum vulgare
additional information
in contrast to the enzyme's O2 sensitivity, the coupled in vitro assay (formation of pFCC from Pheide a) requires oxygen for incorporation into the substrate. In the metabolic channelling of the two partial reactions, PaO creates an oxygen-depleted microenvironment which allows the action of RCC reductase
Phaseolus vulgaris
General Information (protein specific)
General Information
Commentary
Organism
evolution
RCC reductase activity can be demonstrated in mono- as well as in dicotyledons, and is also found in pteridophytes and gymnosperms. Within a plant family RCC reductases from different genera and species have the same stereospecificity
Brassica napus
evolution
RCC reductase activity can be demonstrated in mono- as well as in dicotyledons, and is also found in pteridophytes and gymnosperms. Within a plant family RCC reductases from different genera and species have the same stereospecificity
Capsicum annuum
evolution
RCC reductase activity can be demonstrated in mono- as well as in dicotyledons, and is also found in pteridophytes and gymnosperms. Within a plant family RCC reductases from different genera and species have the same stereospecificity
Festuca pratensis
evolution
RCC reductase activity can be demonstrated in mono- as well as in dicotyledons, and is also found in pteridophytes and gymnosperms. Within a plant family RCC reductases from different genera and species have the same stereospecificity
Hordeum vulgare
evolution
RCC reductase activity can be demonstrated in mono- as well as in dicotyledons, and is also found in pteridophytes and gymnosperms. Within a plant family RCC reductases from different genera and species have the same stereospecificity
Phaseolus vulgaris
metabolism
the oxygenase catalyzing porphyrin cleavage is a monooxygenase. In Chlorella, a mechanism with intermediary formation of a C4:C5 epoxide and subsequent hydrolytic cleavage and prototropic rearrangements has been proposed. Thereby, the second rearrangement at C10 has been demonstrated to be highly stereoselective. Two atoms of oxygen are introduced into RCC, pFCC-1 and the corresponding red catabolites of Chlorella protothecoides and production of pFCC-1 from Pheide a requires dioxygen. After hydroxylation and additional species-specific modifications, in Chlorella, the final degradation products of chlorophyll are excreted into the surrounding medium, whereas in higher plants they are deposited in the vacuoles of mesophyll cells. Occurrence of catabolites of both Chl a and b in Chlorella. In Chlorella porphyrin cleavage does not require the joint action of a monooxygenase and a reductase as is the case in higher plants
Auxenochlorella protothecoides
metabolism
leaf senescence is accompanied by the metabolism of chlorophyll (Chl) to nonfluorescent catabolites (NCCs). The pathway of Chl degradation comprises several reactions and includes the occurrence of intermediary catabolites. After removal of phytol and the central Mg atom from Chl by chlorophyllase and Mg dechelatase, respectively, the porphyrin macrocycle of pheophorbide (Pheide) a is cleaved. This two-step reaction is catalyzed by Pheide a oxygenase and RCC reductase and yields a primary fluorescent catabolite (pFCC). Two atoms of oxygen are introduced into RCC, pFCC-1 and the corresponding red catabolites of Chlorella protothecoides and production of pFCC-1 from Pheide a requires dioxygen. After hydroxylation and additional species-specific modifications, FCCs are tautomerized nonenzymically to NCCs inside the vacuole
Brassica napus
metabolism
leaf senescence is accompanied by the metabolism of chlorophyll to nonfluorescent catabolites (NCCs). The pathway of chlorophyll degradation comprises several reactions and includes the occurrence of intermediary catabolites. After removal of phytol and the central Mg atom from chlorophyll by chlorophyllase and Mg dechelatase, respectively, the porphyrin macrocycle of pheophorbide (Pheide) a is cleaved. This two-step reaction is catalyzed by Pheide a oxygenase and RCC reductase and yields a primary fluorescent catabolite (pFCC). After hydroxylation and additional species-specific modifications, FCCs are tautomerized nonenzymically to NCCs inside the vacuole
Capsicum annuum
metabolism
leaf senescence is accompanied by the metabolism of chlorophyll (Chl) to nonfluorescent catabolites (NCCs). The pathway of Chl degradation comprises several reactions and includes the occurrence of intermediary catabolites. After removal of phytol and the central Mg atom from Chl by chlorophyllase and Mg dechelatase, respectively, the porphyrin macrocycle of pheophorbide (Pheide) a is cleaved. This two-step reaction is catalyzed by Pheide a oxygenase and RCC reductase and yields a primary fluorescent catabolite (pFCC). After hydroxylation and additional species-specific modifications, FCCs are tautomerized nonenzymically to NCCs inside the vacuole
Festuca pratensis
metabolism
leaf senescence is accompanied by the metabolism of chlorophyll to nonfluorescent catabolites (NCCs). The pathway of chlorophyll degradation comprises several reactions and includes the occurrence of intermediary catabolites. After removal of phytol and the central Mg atom from chlorophyll by chlorophyllase and Mg dechelatase, respectively, the porphyrin macrocycle of pheophorbide (Pheide) a is cleaved. This two-step reaction is catalyzed by Pheide a oxygenase and RCC reductase and yields a primary fluorescent catabolite (pFCC). After hydroxylation and additional species-specific modifications, FCCs are tautomerized nonenzymically to NCCs inside the vacuole
Hordeum vulgare
metabolism
leaf senescence is accompanied by the metabolism of chlorophyll (Chl) to nonfluorescent catabolites (NCCs). The pathway of Chl degradation comprises several reactions and includes the occurrence of intermediary catabolites. After removal of phytol and the central Mg atom from Chl by chlorophyllase and Mg dechelatase, respectively, the porphyrin macrocycle of pheophorbide (Pheide) a is cleaved. This two-step reaction is catalyzed by Pheide a oxygenase and RCC reductase and yields a primary fluorescent catabolite (pFCC). After hydroxylation and additional species-specific modifications, in Chlorella, the final degradation products of chlorophyll are excreted into the surrounding medium, whereas in higher plants they are deposited in the vacuoles of mesophyll cells. Occurrence of catabolites of both Chl a and b in Chlorella. In Chlorella porphyrin cleavage does not require the joint action of a monooxygenase and a reductase as is the case in higher plants
Parachlorella kessleri
metabolism
leaf senescence is accompanied by the metabolism of chlorophyll to nonfluorescent catabolites (NCCs). The pathway of chlorophyll degradation comprises several reactions and includes the occurrence of intermediary catabolites. After removal of phytol and the central Mg atom from chlorophyll by chlorophyllase and Mg dechelatase, respectively, the porphyrin macrocycle of pheophorbide (Pheide) a is cleaved. This two-step reaction is catalyzed by Pheide a oxygenase and RCC reductase and yields a primary fluorescent catabolite (pFCC). After hydroxylation and additional species-specific modifications, FCCs are tautomerized nonenzymically to NCCs inside the vacuole
Phaseolus vulgaris
additional information
in contrast to the enzyme's O2 sensitivity, the coupled in vitro assay (formation of pFCC from Pheide a) requires oxygen for incorporation into the substrate. In the metabolic channelling of the two partial reactions, PaO creates an oxygen-depleted microenvironment which allows the action of RCC reductase
Brassica napus
additional information
in contrast to the enzyme's O2 sensitivity, the coupled in vitro assay (formation of pFCC from Pheide a) requires oxygen for incorporation into the substrate. In the metabolic channelling of the two partial reactions, PaO creates an oxygen-depleted microenvironment which allows the action of RCC reductase
Capsicum annuum
additional information
in contrast to the enzyme's O2 sensitivity, the coupled in vitro assay (formation of pFCC from Pheide a) requires oxygen for incorporation into the substrate. In the metabolic channelling of the two partial reactions, PaO creates an oxygen-depleted microenvironment which allows the action of RCC reductase
Festuca pratensis
additional information
in contrast to the enzyme's O2 sensitivity, the coupled in vitro assay (formation of pFCC from Pheide a) requires oxygen for incorporation into the substrate. In the metabolic channelling of the two partial reactions, PaO creates an oxygen-depleted microenvironment which allows the action of RCC reductase
Hordeum vulgare
additional information
in contrast to the enzyme's O2 sensitivity, the coupled in vitro assay (formation of pFCC from Pheide a) requires oxygen for incorporation into the substrate. In the metabolic channelling of the two partial reactions, PaO creates an oxygen-depleted microenvironment which allows the action of RCC reductase
Phaseolus vulgaris
Other publictions for EC 1.3.7.12
No.
1st author
Pub Med
title
organims
journal
volume
pages
year
Activating Compound
Application
Cloned(Commentary)
Crystallization (Commentary)
Engineering
General Stability
Inhibitors
KM Value [mM]
Localization
Metals/Ions
Molecular Weight [Da]
Natural Substrates/ Products (Substrates)
Organic Solvent Stability
Organism
Oxidation Stability
Posttranslational Modification
Purification (Commentary)
Reaction
Renatured (Commentary)
Source Tissue
Specific Activity [micromol/min/mg]
Storage Stability
Substrates and Products (Substrate)
Subunits
Temperature Optimum [°C]
Temperature Range [°C]
Temperature Stability [°C]
Turnover Number [1/s]
pH Optimum
pH Range
pH Stability
Cofactor
Ki Value [mM]
pI Value
IC50 Value
Activating Compound (protein specific)
Application (protein specific)
Cloned(Commentary) (protein specific)
Cofactor (protein specific)
Crystallization (Commentary) (protein specific)
Engineering (protein specific)
General Stability (protein specific)
IC50 Value (protein specific)
Inhibitors (protein specific)
Ki Value [mM] (protein specific)
KM Value [mM] (protein specific)
Localization (protein specific)
Metals/Ions (protein specific)
Molecular Weight [Da] (protein specific)
Natural Substrates/ Products (Substrates) (protein specific)
Organic Solvent Stability (protein specific)
Oxidation Stability (protein specific)
Posttranslational Modification (protein specific)
Purification (Commentary) (protein specific)
Renatured (Commentary) (protein specific)
Source Tissue (protein specific)
Specific Activity [micromol/min/mg] (protein specific)
Storage Stability (protein specific)
Substrates and Products (Substrate) (protein specific)
Subunits (protein specific)
Temperature Optimum [°C] (protein specific)
Temperature Range [°C] (protein specific)
Temperature Stability [°C] (protein specific)
Turnover Number [1/s] (protein specific)
pH Optimum (protein specific)
pH Range (protein specific)
pH Stability (protein specific)
pI Value (protein specific)
Expression
General Information
General Information (protein specific)
Expression (protein specific)
KCat/KM [mM/s]
KCat/KM [mM/s] (protein specific)
736190
Xiao
Cloning and expression analysi ...
Capsicum annuum
Genet. Mol. Res.
14
368-379
2015
-
-
1
-
-
-
-
-
2
-
-
-
-
3
-
-
-
-
-
5
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
1
1
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
5
-
-
-
-
-
-
-
-
-
-
-
-
1
3
3
1
-
-
726323
Liu
Nitric oxide deficiency accele ...
Arabidopsis thaliana
PLoS ONE
8
e56345
2013
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
-
-
1
-
-
1
-
-
726877
Sakuraba
7-Hydroxymethyl chlorophyll a ...
Arabidopsis thaliana
Biochem. Biophys. Res. Commun.
430
32-37
2013
-
-
1
-
-
-
-
-
-
-
-
1
-
1
-
-
-
-
-
2
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
2
-
-
1
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
726165
Sakuraba
STAY-GREEN and chlorophyll cat ...
Arabidopsis thaliana
Plant Cell
24
507-518
2012
-
-
-
-
-
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
1
-
-
1
-
-
736688
Zhang
Correlation of leaf senescence ...
Brassica rapa
J. Plant Physiol.
168
2081-2087
2011
-
-
1
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
2
1
1
2
-
-
712769
Sugishima
Crystal structures of the subs ...
Arabidopsis thaliana
J. Mol. Biol.
402
879-891
2010
-
-
1
1
2
-
-
-
1
-
-
2
-
2
-
-
1
-
-
1
-
-
4
2
-
-
-
-
-
-
-
3
-
-
-
-
-
1
3
1
2
-
-
-
-
-
1
-
-
2
-
-
-
1
-
1
-
-
4
2
-
-
-
-
-
-
-
-
-
3
3
-
-
-
699585
Sugishima
Crystal structure of red chlor ...
Arabidopsis thaliana
J. Mol. Biol.
389
376-387
2009
1
-
1
1
-
-
-
-
3
-
2
2
-
2
-
-
1
-
-
1
-
-
3
2
-
-
-
-
-
-
-
1
-
-
-
1
-
1
1
1
-
-
-
-
-
-
3
-
2
2
-
-
-
1
-
1
-
-
3
2
-
-
-
-
-
-
-
-
-
3
3
-
-
-
700695
Ougham
The control of chlorophyll cat ...
Arabidopsis thaliana
Plant Biol.
10 Suppl 1
4-14
2008
-
-
-
-
-
-
-
-
2
-
-
1
-
4
-
-
-
-
-
1
1
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
1
-
-
-
-
-
1
1
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
676436
Pruzinska
In vivo participation of red c ...
Arabidopsis thaliana
Plant Cell
19
369-387
2007
-
-
-
-
2
-
-
-
1
-
-
1
-
3
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
1
-
-
1
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
671354
Hörtensteiner
Chlorophyll degradation during ...
Arabidopsis sp., Hordeum vulgare, Solanum lycopersicum, Spinacia oleracea
Annu. Rev. Plant Biol.
57
55-77
2006
-
-
3
-
3
-
-
-
2
-
-
3
-
5
-
-
2
-
-
1
-
-
4
-
-
-
-
-
-
-
-
1
-
-
-
-
-
3
1
-
3
-
-
-
-
-
2
-
-
3
-
-
-
2
-
1
-
-
4
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
735438
Hoertensteiner
Chlorophyll degradation during ...
Arabidopsis thaliana
Annu. Plant Biol.
57
55-77
2006
-
-
1
-
1
-
-
-
2
-
2
1
-
1
-
-
-
-
-
2
-
-
2
1
-
-
-
-
-
-
-
1
-
-
-
-
-
1
1
-
1
-
-
-
-
-
2
-
2
1
-
-
-
-
-
2
-
-
2
1
-
-
-
-
-
-
-
-
-
3
3
-
-
-
676587
Pruzinska
Chlorophyll breakdown in senes ...
Arabidopsis thaliana
Plant Physiol.
139
52-63
2005
-
-
-
-
-
-
-
-
-
-
-
1
-
3
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
736960
Roca
Analysis of the chlorophyll ca ...
Lolium temulentum
Phytochemistry
65
1231-1238
2004
-
-
-
-
1
-
-
-
2
-
-
1
-
1
-
-
-
-
-
1
-
-
1
-
1
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
1
-
-
-
-
-
2
-
-
1
-
-
-
-
-
1
-
-
1
-
1
-
-
-
-
-
-
-
-
1
1
-
-
-
676913
Mach
The Arabidopsis-accelerated ce ...
Arabidopsis sp.
Proc. Natl. Acad. Sci. USA
98
771-776
2001
-
1
1
-
-
-
-
-
2
-
-
1
-
5
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
2
-
-
1
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
676395
Hörtensteiner
-
Evolution of chlorophyll degra ...
Angiopteris, Auxenochlorella protothecoides, Carex, Cleome graveolens, Cycas sp., Equisetum sp., Euptelea, Ginkgo biloba, Hordeum vulgare, Metasequoia, Picea, Psilotum, Selaginella sp., Solanum lycopersicum, Spinacia oleracea, Taxus baccata, Taxus sp., Tropaeolum majus
Plant Biol.
2
63-67
2000
-
-
-
-
2
-
3
-
27
-
-
15
-
18
-
-
-
-
-
18
-
-
38
-
1
-
-
-
1
-
-
15
-
-
-
-
-
-
15
-
2
-
-
3
-
-
27
-
-
15
-
-
-
-
-
18
-
-
38
-
1
-
-
-
1
-
-
-
-
15
15
-
-
-
676490
Wüthrich
Molecular cloning, functional ...
Arabidopsis thaliana, Hordeum vulgare
Plant J.
21
189-198
2000
-
-
2
-
-
-
1
-
1
-
2
2
-
5
-
1
2
-
-
3
-
-
2
1
-
-
-
-
-
-
-
1
-
-
-
-
-
2
1
-
-
-
-
1
-
-
1
-
2
2
-
-
1
2
-
3
-
-
2
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
736215
Muehlecker
-
Breakdown of chlorophyll: A fl ...
Brassica napus, Capsicum annuum
Helv. Chim. Acta
83
278-286
2000
-
-
-
-
-
-
-
-
1
2
-
2
-
2
-
-
-
-
-
2
-
-
3
-
-
-
-
-
1
-
-
2
-
-
-
-
-
-
2
-
-
-
-
-
-
-
1
2
-
2
-
-
-
-
-
2
-
-
3
-
-
-
-
-
1
-
-
-
-
8
8
-
-
-
736949
Hoertensteiner
Chlorophyll breakdown in oilse ...
Arabidopsis thaliana, Brassica napus
Photosyn. Res.
64
137-146
2000
-
-
-
-
-
-
1
-
4
-
-
2
-
4
2
-
-
-
-
4
-
-
4
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
2
-
-
-
-
1
-
-
4
-
-
2
-
2
-
-
-
4
-
-
4
-
-
-
-
-
-
-
-
-
-
4
4
-
-
-
735913
Hoertensteiner
Chlorophyll breakdown in highe ...
Auxenochlorella protothecoides, Brassica napus, Capsicum annuum, Festuca pratensis, Hordeum vulgare, Parachlorella kessleri, Phaseolus vulgaris
Cell. Mol. Life Sci.
56
330-347
1999
-
-
-
-
-
-
5
-
6
14
-
9
-
9
5
-
1
7
-
5
-
-
16
-
-
-
-
-
-
-
-
7
-
-
-
-
-
-
7
-
-
-
-
5
-
-
6
14
-
9
-
5
-
1
-
5
-
-
16
-
-
-
-
-
-
-
-
-
-
17
17
-
-
-
674404
Hörtensteiner
The key step in chlorophyll br ...
Brassica napus
J. Biol. Chem.
273
15335-15339
1998
-
-
-
-
-
-
-
-
2
-
-
1
-
5
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
-
-
-
-
-
-
2
-
-
1
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
2
2
-
-
-
676564
Rodoni
Chlorophyll breakdown in senes ...
Brassica napus
Plant Physiol.
115
669-676
1997
-
-
-
-
-
-
-
-
1
-
-
1
-
1
-
-
-
-
-
2
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
-
-
-
-
-
-
1
-
-
1
-
-
-
-
-
2
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
676565
Rodoni
Partial purification and chara ...
Hordeum vulgare
Plant Physiol.
115
677-682
1997
-
-
-
-
-
-
1
1
1
-
-
1
-
5
-
-
1
-
-
2
-
-
2
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
2
-
-
-
-
1
-
1
1
-
-
1
-
-
-
1
-
2
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-