Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
glycine + 2,2'-di-(p-nitrophenyl-5,5')-(diphenyl)-3,3'-(3,3'-dimethoxy-4,4'-diphenylene) ditetrazolium chloride
HCN + ?
-
NBT
-
-
?
glycine + 2,6-dichlorophenol-indophenol
HCN + CO2 + ?
glycine + 2-(p-iodophenyl)-3-(p-nitrophenyl)-5-phenyl-tetrazolium chloride
HCN + CO2 + ?
-
INT
-
-
?
glycine + FAD
HCN + CO2 + FADH2
-
glycine is decarboxylated to HCN by the enzyme HCN synthase, the product of the hcnABC synthase gene cluster
-
-
?
glycine + O2
HCN + CO2 + 2 H2O
glycine + O2
HCN + CO2 + H2O
glycine + phenazine methosulfate
HCN + CO2 + ?
glycine + potassium ferricyanide
HCN + CO2 + ?
glycine + pyocyanine
HCN + ?
-
-
-
-
?
additional information
?
-
glycine + 2,6-dichlorophenol-indophenol

HCN + CO2 + ?
-
DCIP
-
-
?
glycine + 2,6-dichlorophenol-indophenol
HCN + CO2 + ?
-
DCIP
-
-
?
glycine + O2

HCN + CO2 + 2 H2O
-
-
-
-
?
glycine + O2
HCN + CO2 + 2 H2O
-
-
-
-
?
glycine + O2
HCN + CO2 + 2 H2O
-
-
-
-
?
glycine + O2
HCN + CO2 + 2 H2O
-
-
-
-
?
glycine + O2
HCN + CO2 + 2 H2O
-
-
-
-
?
glycine + O2
HCN + CO2 + 2 H2O
-
-
-
-
?
glycine + O2
HCN + CO2 + 2 H2O
-
-
-
-
?
glycine + O2
HCN + CO2 + 2 H2O
-
-
-
-
?
glycine + O2
HCN + CO2 + 2 H2O
-
-
-
-
?
glycine + O2
HCN + CO2 + 2 H2O
-
-
-
-
?
glycine + O2
HCN + CO2 + 2 H2O
-
-
-
-
?
glycine + O2
HCN + CO2 + 2 H2O
-
-
-
-
?
glycine + O2
HCN + CO2 + 2 H2O
-
-
-
-
?
glycine + O2
HCN + CO2 + 2 H2O
-
-
-
-
?
glycine + O2

HCN + CO2 + H2O
-
-
-
-
?
glycine + O2
HCN + CO2 + H2O
-
-
-
-
?
glycine + O2
HCN + CO2 + H2O
-
-
-
-
?
glycine + O2
HCN + CO2 + H2O
-
-
-
-
?
glycine + O2
HCN + CO2 + H2O
-
dissolved oxygen regulates the synthesis of the cyanogenic enzyme system
-
-
?
glycine + O2
HCN + CO2 + H2O
-
dissolved oxygen regulates the synthesis of the cyanogenic enzyme system
-
-
?
glycine + O2
HCN + CO2 + H2O
-
-
-
-
?
glycine + O2
HCN + CO2 + H2O
-
-
-
-
?
glycine + O2
HCN + CO2 + H2O
-
-
-
-
?
glycine + O2
HCN + CO2 + H2O
-
-
-
-
?
glycine + O2
HCN + CO2 + H2O
-
-
-
-
?
glycine + O2
HCN + CO2 + H2O
-
-
-
-
?
glycine + O2
HCN + CO2 + H2O
-
-
-
-
?
glycine + O2
HCN + CO2 + H2O
-
-
-
-
?
glycine + O2
HCN + CO2 + H2O
-
-
-
-
?
glycine + O2
HCN + CO2 + H2O
-
-
-
-
?
glycine + phenazine methosulfate

HCN + CO2 + ?
-
-
-
-
?
glycine + phenazine methosulfate
HCN + CO2 + ?
-
PMS provided greatest activity, oxygen allows only a limited response
-
-
?
glycine + phenazine methosulfate
HCN + CO2 + ?
-
PMS provided greatest activity, oxygen allows only a limited response
-
-
?
glycine + phenazine methosulfate
HCN + CO2 + ?
-
-
-
-
?
glycine + phenazine methosulfate
HCN + CO2 + ?
-
-
-
-
?
glycine + potassium ferricyanide

HCN + CO2 + ?
-
-
-
-
?
glycine + potassium ferricyanide
HCN + CO2 + ?
-
-
-
-
?
additional information

?
-
-
sodium nitrate, sodium nitrite, NAD+, NADP+, FAD and FMN fail as electron acceptors to support cyanide biosynthesis
-
-
?
additional information
?
-
-
cyanide produced by the enzyme is involved in virulence of the organism. Drosophila melanogaster exposed to cyanogenic Pseudomonas aeruginosa strains have high cyanide and low ATP concentrations in body extracts, and treatment with a cyanide antidote equalized survival of flies injected with cyanogenic and noncyanogenic strains. Strain PAO1 with a mutation in the hydrogen cyanide synthase gene cluster is much less toxic to flies than the parental cyanogenic strain or 2 knock-in strains, overview
-
-
?
additional information
?
-
-
sodium nitrate, sodium nitrite, NAD+, NADP+, FAD and FMN fail as electron acceptors to support cyanide biosynthesis
-
-
?
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Castric, K.F.; McDevitt, D.A.; Castric, P.A.
Influence of aeration on hydrogen cyanide biosynthesis byPseudomonas aeruginosa
Curr. Microbiol.
5
223-226
1981
Chromobacterium violaceum, Pseudomonas aeruginosa, Pseudomonas aeruginosa 9-D2
-
brenda
Castric, P.
Influence of oxygen on the Pseudomonas aeruginosa hydrogen cyanide synthase
Curr. Microbiol.
29
19-21
1994
Chromobacterium violaceum, Pseudomonas aeruginosa, Pseudomonas aeruginosa 9-D2
brenda
Laville, J.; Blumer, C.; von Schroetter, C.; Gaia, V.; Defago, G.; Keel, C.; Haas, D.
Characterization of the HCNABC gene cluster encoding hydrogen cyanide synthase and anaerobic regulation by ANR in the strictly aerobic biocontrol agent Pseudomonas fluorescens CHA0
J. Bacteriol.
180
3187-3196
1998
Chromobacterium violaceum, Pseudomonas sp., Pseudomonas aeruginosa, Pseudomonas fluorescens, Pseudomonas aeruginosa ADD1976, Pseudomonas fluorescens CHA0
brenda
Blumer, C.; Haas, D.
Iron regulation of the hcnABC genes encoding hydrogen cyanide synthase depends on the anaerobic regulator ANR rather than on the global activator GacA in Pseudomonas fluorescens CHA0
Microbiology
146
2417-2424
2000
Chromobacterium violaceum, Pseudomonas aeruginosa, Pseudomonas fluorescens, Pseudomonas aeruginosa PAO1A4, Pseudomonas fluorescens CHA0
-
brenda
Blumer, C.; Haas, D.
Mechanism, regulation, and ecological role of bacterial cyanide biosynthesis
Arch. Microbiol.
173
170-177
2000
Synechococcus elongatus PCC 7942 = FACHB-805, Chromobacterium violaceum, Desmonostoc muscorum, Leptolyngbya boryana, Pseudomonas aeruginosa, Pseudomonas chlororaphis subsp. aureofaciens, Pseudomonas chlororaphis, Pseudomonas fluorescens, Rhizobium leguminosarum, Pseudomonas fluorescens CHA0
brenda
Broderick, K.E.; Chan, A.; Balasubramanian, M.; Feala, J.; Reed, S.L.; Panda, M.; Sharma, V.S.; Pilz, R.B.; Bigby, T.D.; Boss, G.R.
Cyanide produced by human isolates of Pseudomonas aeruginosa contributes to lethality in Drosophila melanogaster
J. Infect. Dis.
197
457-464
2008
Pseudomonas aeruginosa
brenda
Michelsen, C.; Stougaard, P.
Hydrogen cyanide synthesis and antifungal activity of the biocontrol strain Pseudomonas fluorescens In5 from Greenland is highly dependent on growth medium
Can. J. Microbiol.
58
381-390
2012
Pseudomonas fluorescens (C7E715 and C7E716 and C7E717), Pseudomonas fluorescens In5 (C7E715 and C7E716 and C7E717)
brenda
Uzair, B.; Kausar, R.; Bano, S.A.; Fatima, S.; Badshah, M.; Habiba, U.; Fasim, F.
Isolation and molecular characterization of a model antagonistic Pseudomonas aeruginosa divulging in vitro plant growth promoting characteristics
BioMed Res. Int.
2018
6147380
2018
Pseudomonas aeruginosa (A0A0D6HQ27)
brenda
Liang, J.; Wang, S.; Yiming, A.; Fu, L.; Nie, W.; Chen, G.; Zhu, B.
Genome resource for Pseudomonas sp. strain L22-9 a potential novel species with antifungal activity
Phytopathology
111
425-428
2021
Pseudomonas bijieensis
brenda